Search results for: wind generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1581

Search results for: wind generator

1011 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine

Authors: Hany El Said Fawaz

Abstract:

This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.

Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length

Procedia PDF Downloads 241
1010 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 325
1009 Effect of Synthetic Jet on Wind Turbine Noise

Authors: Reda Mankbadi

Abstract:

The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream.

Keywords: simulations, aeroacoustics, wind turbine noise, synthetic jet actuators (SJAs)

Procedia PDF Downloads 343
1008 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season

Authors: Benedictus Asriparusa

Abstract:

In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.

Keywords: flaring system, fluent model, dissemination of pollutant, transition season

Procedia PDF Downloads 367
1007 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application

Authors: M. Kaouane, A. Boukhelifa, A. Cheriti

Abstract:

In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.

Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer

Procedia PDF Downloads 884
1006 Statistical Comparison of Machine and Manual Translation: A Corpus-Based Study of Gone with the Wind

Authors: Yanmeng Liu

Abstract:

This article analyzes and compares the linguistic differences between machine translation and manual translation, through a case study of the book Gone with the Wind. As an important carrier of human feeling and thinking, the literature translation poses a huge difficulty for machine translation, and it is supposed to expose distinct translation features apart from manual translation. In order to display linguistic features objectively, tentative uses of computerized and statistical evidence to the systematic investigation of large scale translation corpora by using quantitative methods have been deployed. This study compiles bilingual corpus with four versions of Chinese translations of the book Gone with the Wind, namely, Piao by Chunhai Fan, Piao by Huairen Huang, translations by Google Translation and Baidu Translation. After processing the corpus with the software of Stanford Segmenter, Stanford Postagger, and AntConc, etc., the study analyzes linguistic data and answers the following questions: 1. How does the machine translation differ from manual translation linguistically? 2. Why do these deviances happen? This paper combines translation study with the knowledge of corpus linguistics, and concretes divergent linguistic dimensions in translated text analysis, in order to present linguistic deviances in manual and machine translation. Consequently, this study provides a more accurate and more fine-grained understanding of machine translation products, and it also proposes several suggestions for machine translation development in the future.

Keywords: corpus-based analysis, linguistic deviances, machine translation, statistical evidence

Procedia PDF Downloads 130
1005 Risk Assessment of Radiation Hazard for a Typical WWER1000: Cancer Risk Analysis during a Hypothetical Accident

Authors: R. Gharari, N. Kojouri, R. Hosseini Aghdam, E. Alibeigi, B. Salmasian

Abstract:

In this research, the WWER1000/V446 (a PWR Russian type reactor) is chosen as the case study. It is assumed that radioactive materials that release into the environment are more than allowable limit due to a complete failure of the ventilation system (reactor stack). In the following, the HOTSPOT and the RASCAL computational codes have been used and coupled with a developed program using MATLAB software to evaluate Total effective dose equivalent (TEDE) and cancer risk according to the BEIR equations for various human organs. In addition, effects of the containment spray system and climate conditions on the TEDE have been investigated. According to the obtained results, there is an inverse correlation between the received dose and the wind speed; the amount of the TEDE for wind speed 2 m/s and is more than wind speed for 14 m/s during the class A of the climate (2.168 and 0.444 mSv, respectively). Also, containment spray system can effect and reduce the amount of the fission products and TEDE. Furthermore, the probability of the cancer risk for women is more than men, and for children is more than adults. In addition, a specific emergency zonal planning is proposed. Results are promising in which the site selection of the WWER1000/V446 were considered safe for the public in this situation.

Keywords: TEDE, total effective dose equivalent, RASCAL and HOTSPOT codes, BEIR equations, cancer risk

Procedia PDF Downloads 157
1004 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 71
1003 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 152
1002 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation

Procedia PDF Downloads 386
1001 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat

Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang

Abstract:

This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.

Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite

Procedia PDF Downloads 287
1000 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 120
999 Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance

Authors: Shayan Arefi, Qadir Esmaili, Seyed Ali Jazayeri

Abstract:

The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle.

Keywords: turbo generator, axial fan, Ansys, performance

Procedia PDF Downloads 359
998 Optimization and Analysis of Heat Recovery System on Gas Complex Turbo Generators

Authors: Ensieh Hajeb, Hefzollah Mohammadiyan, Mohamad Baqer Heidari

Abstract:

In this paper layout plans and determine the best place to install a heat recovery boilers , gas turbines , and simulation models built to evaluate the performance of the design and operating conditions, heat recovery boiler design using model built on the basis of operating conditions , the effect of various parameters on the performance of the designed heat recovery boiler , heat recovery boiler installation was designed to evaluate the technical and economic impact on performance would be Turbo generator. Given the importance of this issue, that is the main goal of economic efficiency and reduces costs; this project has been implemented similar plans in which the target is implementation specific patterns. The project will also help us in the process of gas refineries and the actual efficiency of the process after adding a system to analyze the turbine and predict potential problems and how to fix them and appropriate measures according to the results of simulation analysis and results of the process gain. The results of modeling and the effect of different parameters on this line, the software has been ThermoFlow.

Keywords: boiler, gas turbine, turbo generator, power flow

Procedia PDF Downloads 399
997 Tornadic Waterspout Impacts on Coastal Zones

Authors: Matthew J. Glanville, Christian J. Rohr

Abstract:

Coastal waterspout activity is known to occur globally over a wide climatic range. This study has focussed on recent tornadic waterspout activity along the temperate New South Wales coastline of Australia. Recent tornadic waterspout impacts were surveyed at Kurnell, Kiama, and Lennox Head in coastal New South Wales and are thought to have formed either wholly or partly offshore. It is proposed that a warm, moist layer of air at the sea surface creates more unstable atmospheric conditions than would an approaching supercell path over land, and hence a greater propensity to generate a tornadic event. Measured and observed wind velocities in the vicinity of 60 ms-1 associated with the observed tornadic waterspouts are considerably higher in magnitude than the basic wind speed presented in AS1170.2 for an estimated return period of 2000 years in Region A.

Keywords: coastal, survey, tornadic, waterspout

Procedia PDF Downloads 216
996 Identify the Renewable Energy Potential through Sustainability Indicators and Multicriteria Analysis

Authors: Camila Lima, Murilo Andrade Valle, Patrícia Teixeira Leite Asano

Abstract:

The growth in demand for electricity, caused by human development, depletion and environmental impacts caused by traditional sources of electricity generation have made new energy sources are increasingly encouraged and necessary for companies in the electricity sector. Based on this scenario, this paper assesses the negative environmental impacts associated with thermoelectric power plants in Brazil, pointing out the importance of using renewable energy sources, reducing environmental aggression. This article points out the existence of an energy alternative, wind energy, of the municipalities of São Paulo, represented by georeferenced maps with the help of GIS, using as a premise the indicators of sustainability and multicriteria analysis in the decision-making process.

Keywords: GIS (geographic information systems), multicriteria analysis, sustainability, wind energy

Procedia PDF Downloads 353
995 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers

Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato

Abstract:

The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.

Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence

Procedia PDF Downloads 129
994 A Review of Renewable Energy Conditions in Iran Country

Authors: Ehsan Atash Zaban, Mehdi Beyk

Abstract:

In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.

Keywords: renewable energy, solar stations, wind, biomass, hydropower

Procedia PDF Downloads 78
993 An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application

Authors: Syed Hassan Raza Shah, Mohammad Mohammad Ali

Abstract:

The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000.

Keywords: leading and trailing edge corrugations, low reynolds number, wind tunnel testing, NACA0018

Procedia PDF Downloads 274
992 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 341
991 Cross Ventilation Potential in an Array of Building Blocks: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Wind driven Cross ventilation is achieved when air moves indoors due to the pressure difference on the building envelope. This is especially important in breezy moderate to humid settings in which fast air flow can promote thermal comfort. Studies have shown that the use of simple building forms or ignoring the urban context when studying natural ventilation can lead to inaccurate results. In this paper, the impact of the urban form of a regular array of buildings is investigated to define the impact of this urban setting on cross ventilation potential. The objective of this paper is to provide the necessary tools to achieve natural ventilation for cooling purposes in an array of building blocks context. The array urban form has been studied before for natural ventilation purposes yet to the best of our knowledge no study has considered the relationship between the urban form and the pressure patterns that develop on the buildings envelope for cross ventilation. For this we use detailed weather data for a case study city of Alexandria (Egypt), as well as a validated CFD simulations to investigate the cross ventilation potential in terms of pressure patterns in waterfront as well as in-city wind flows perpendicular to the buildings array. it was found that for both waterfront and in-city wind speeds the windows needed for cross ventilation in rear raws of the array are significantly larger than those needed for front raw.

Keywords: Alexandria, CFD, cross ventilation, pressure coefficient

Procedia PDF Downloads 377
990 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 291
989 Losing Benefits from Social Network Sites Usage: An Approach to Estimate the Relationship between Social Network Sites Usage and Social Capital

Authors: Maoxin Ye

Abstract:

This study examines the relationship between social network sites (SNS) usage and social capital. Because SNS usage can expand the users’ networks, and people who are connected in this networks may become resources to SNS users and lead them to advantage in some situation, it is important to estimate the relationship between SNS usage and ‘who’ is connected or what resources the SNS users can get. Additionally, ‘who’ can be divided in two aspects – people who possess high position and people who are different, hence, it is important to estimate the relationship between SNS usage and high position people and different people. This study adapts Lin’s definition of social capital and the measurement of position generator which tells us who was connected, and can be divided into the same two aspects as well. A national data of America (N = 2,255) collected by Pew Research Center is utilized to do a general regression analysis about SNS usage and social capital. The results indicate that SNS usage is negatively associated with each factor of social capital, and it suggests that, in fact, comparing with non-users, although SNS users can get more connections, the variety and resources of these connections are fewer. For this reason, we could lose benefits through SNS usage.

Keywords: social network sites, social capital, position generator, general regression

Procedia PDF Downloads 254
988 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network

Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer

Abstract:

The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).

Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine

Procedia PDF Downloads 400
987 Experimental Studies of Dragonfly Flight Aerodynamics

Authors: Mohd Izmir Bin Yamin, Thomas Arthur Ward

Abstract:

Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms.

Keywords: flapping wing flight, leading edge vortex, aerodynamics performances, wind tunnel test

Procedia PDF Downloads 370
986 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan

Authors: Gong Kangming, Zhao Caiqi

Abstract:

High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.

Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design

Procedia PDF Downloads 455
985 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection

Authors: Mogens Saberi

Abstract:

The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.

Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions

Procedia PDF Downloads 371
984 Strategies and Difficulties to Integrate Renewable Energy into Recreational Open Spaces

Authors: A. Tereci, M. Atmaca

Abstract:

Recreational spaces designed or build for refreshment of the users through natural riches and/or activities. Those places contribute to the quality of city life by providing relaxation point for citizens and maintaining the environmental equilibrium. The elements which constitute the recreational areas also promote long-term environmental and social sustainability of cities. Preservation and creation of the recreation open spaces are important for water and air quality, natural habitat and also social communication. On this point, it is also a good area for promoting the renewable energy sources through comprehension of the sustainable development which is possible only with using nature and technic together. Energy production is mainly technical issue, and architectural design of these elements to the site always ignores or avoid. The main problems for integration of renewable energy sources are the system suitability, security, durability, and resiliency. In this paper, one of the city recreational open spaces in Konya, Turkey was evaluated for integration of possible renewable energy sources. It shows that the solar energy potential is high and PV integration is the best option. On the other hand wind, energy power and area is not suitable for wind turbine, so wind belts were decided to integrate on the design. According to recreational activities, the chosen elements was designed for site application, and their performance was calculated. According to possible installation on the furniture, there is 50 MWh/a electricity production capacity.

Keywords: energy, integrated design, recreational space, renewables

Procedia PDF Downloads 145
983 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 231
982 Prediction of Flow Around a NACA 0015 Profile

Authors: Boukhadia Karima

Abstract:

The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.

Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel

Procedia PDF Downloads 401