Search results for: water chemistry monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11499

Search results for: water chemistry monitoring

10929 Assessing Impacts of Climate Change on Rural Water Resources

Authors: Ntandoyenkosi Moyo

Abstract:

Majority of rural Eastern Cape villages of South Africa households do not have access to safe water supply. Due to changes in climatic conditions for example higher temperatures, these sources become not reliable in supplying adequate and safe water to the population. These rural populations due to the drying up of water resources have to find other alternative ways to get water. Climate change has an impact on the reliability of water resources and this has an impact on rural communities. This study seeks to establish what alternative ways do people use when affected by unfavorable conditions like less rainfall and increased temperatures. The study also seeks to investigate any local and provincial intervention in the provision of water to the village. Interventions can be in the form of programmes or initiatives that involve water supply strategies. The community should participate fully in making sure that their place is serviced. The study will identify households with improved sources (JOJO tanks) and those with unimproved sources (rivers) and investigate what alternatives they resort to when their sources dry up. The study also investigates community views on whether they have any challenges of water supply (reliability and adequacy) as required by section 27(1) (b) of the constitution which states that everyone should have access to safe and clean water.

Keywords: rural water resources, temperature, improved sources, unimproved sources

Procedia PDF Downloads 313
10928 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex

Authors: Ashish Agarwal, Vaibhav Singh

Abstract:

Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.

Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas

Procedia PDF Downloads 213
10927 Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria

Authors: Olu Ale, Olugbenga Aribisala, Sanmi Awopetu

Abstract:

Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested.

Keywords: bacteriological, physicochemical, quality, wells, Ado Ekiti

Procedia PDF Downloads 353
10926 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage

Procedia PDF Downloads 201
10925 A Multi-Regional Structural Path Analysis of Virtual Water Flows Caused by Coal Consumption in China

Authors: Cuiyang Feng, Xu Tang, Yi Jin

Abstract:

Coal is the most important primary energy source in China, which exerts a significant influence on the rapid economic growth. However, it makes the water resources to be a constraint on coal industry development, on account of the reverse geographical distribution between coal and water. To ease the pressure on water shortage, the ‘3 Red Lines’ water policies were announced by the Chinese government, and then ‘water for coal’ plan was added to that policies in 2013. This study utilized a structural path analysis (SPA) based on the multi-regional input-output table to quantify the virtual water flows caused by coal consumption in different stages. Results showed that the direct water input (the first stage) was the highest amount in all stages of coal consumption, accounting for approximately 30% of total virtual water content. Regional analysis demonstrated that virtual water trade alleviated the pressure on water use for coal consumption in water shortage areas, but the import of virtual water was not from the areas which are rich in water. Sectoral analysis indicated that the direct inputs from the sectors of ‘production and distribution of electric power and heat power’ and ‘Smelting and pressing of metals’ took up the major virtual water flows, while the sectors of ‘chemical industry’ and ‘manufacture of non-metallic mineral products’ importantly but indirectly consumed the water. With the population and economic growth in China, the water demand-and-supply gap in coal consumption would be more remarkable. In additional to water efficiency improvement measures, the central government should adjust the strategies of the virtual water trade to address local water scarcity issues. Water resource as the main constraints should be highly considered in coal policy to promote the sustainable development of the coal industry.

Keywords: coal consumption, multi-regional input-output model, structural path analysis, virtual water

Procedia PDF Downloads 294
10924 Photo-Reflective Mulches For Saving Water in Agriculture

Authors: P. Mormile, M. Rippa, G. Bonanomi, F. Scala, Changrong Yan, L. Petti

Abstract:

Photo-reflective films represent, in the panorama of agricultural films, a valid support for Spring and Summer cultivations, both in open field and under greenhouse. In fact, thanks to the high reflectivity of these films, thermal aggression, that causes serious problems to plants when traditional black mulch films are used, is avoided. Yellow or silver colored photo-reflective films protect plants from damages, assure the mulching effect, give a valid support to Integrated Pest Management and, according to recent trials, greatly contribute in saving water. This further advantage is determined by the high water condensation under the mulch film and this gives rise to reduction of irrigation. Water saving means also energy saving for electric system of water circulation. Trials performed at different geographic and ambient context confirm that the use of photo-reflective mulch films during the hot season allows to save water up to 30%.

Keywords: photo-selective mulches, saving water, water circulation, irrigation

Procedia PDF Downloads 507
10923 Effect of Water Hardness and Free Residual Chlorine on Black Tea Brew

Authors: P. Murugesan, G. Venkateswaran, V. A. Shanmuga Selvan

Abstract:

Water used for brewing tea plays a major role in the quality of tea. Water with higher hardness gives very dark coloured brew. This study was conducted to determine the effect of water hardness and free residual chlorine on the quality of black tea liquor. Theaflavin (TF) and Thearubigin (TR) levels are lower in comparison with the tea brewed in distilled water. At the same time, there is an increase in High Polymerized Substance (HPS) and Total Liquor Colour (TLC). While water with higher hardness has a negative impact on tea brew, water with high concentration of free residual chlorine did not affect the quality of tea brew.

Keywords: Theaflavin, Thearubigin, high polymerised substance, total liquor colour, hardness, residual chlorine

Procedia PDF Downloads 250
10922 Rethinking of Self-Monitoring and Self-Response Roles in Teaching Grammar Knowledge to Iranian EFL Learners

Authors: Gholam Reza Parvizi, Ali Reza Kargar, Amir Arani

Abstract:

In the present days, learning and teaching researchers have emphasized the role which teachers, tutors, and trainers’ constraint knowledge treat in resizing and trimming what they perform in educational atmosphere. Regarding English language as subject to teaching, although the prominence of instructor’s knowledge about grammar has also been stressed, but the lack of empirical insights into the relationship between teacher’ self-monitoring and self-response of grammar knowledge have been observed. With particular attention to the grammar this article indicates and discusses information obtained self- feedback and conversing teachers of a kind who backwash the issue. The result of the study indicates that enabling teachers to progress and maintain a logical and realistic awareness of their knowledge about grammar have to be prominent goal for teachers’ education and development programs.

Keywords: grammar knowledge, self-monitoring, self-response, teaching grammar, language teaching program

Procedia PDF Downloads 546
10921 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

Authors: Luís Pina

Abstract:

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Keywords: GSM, marine biology, marine turtles, unstructured supplementary service data (USSD)

Procedia PDF Downloads 195
10920 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal

Authors: K. Domagala, D. Kata, T. Graule

Abstract:

Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.

Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment

Procedia PDF Downloads 121
10919 Semi-Automatic Design and Fabrication of Water Waste Cleaning Machine

Authors: Chanida Tangjai Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Collection of marine garbage in the modern world, where technology is vital to existence. Consequently, technology can assist in reducing the duplicate labor in the subject of collecting trash in the water that must be done the same way repeatedly owing to the consequence of suffering an emerging disease or COVID-19. This is due to the rapid advancement of technology. As a result, solid trash and plastic garbage are increasing. Agricultural gardens, canals, ponds, and water basins are all sources of water. Building boat-like instruments for rubbish collection in the water will be done this time. It has two control options, boat control via remote control and boat control via an Internet of Things system. A solar panel with a power output of 40 watts powers the system being able to store so accurate and precise waste collection, allowing for thorough water cleaning. The primary goals are to keep the water's surface clean and assess its quality to support the aquatic ecology.

Keywords: automatic boat, water treatment, cleaning machine, iot

Procedia PDF Downloads 82
10918 Water Sources in 3 Local Municipalities of O. R. Tambo District Municipality, South Africa: A Comparative Study

Authors: Betek Cecilia Kunseh, Musampa Christopher

Abstract:

Despite significant investment and important progress, access to safe potable water continues to be one of the most pressing challenges for rural communities in O R Tambo District Municipality. This is coupled with the low income of most residents and government's policy which obliges municipalities to supply basic water usually set at 6 kilolitres per month to each household free of charge. During the research, data was collected from three local municipalities of O. R. Tambo, i.e. King Sabata Dalindyebo, Mhlontlo and Ingquza Hill local municipalities. According to the result, significant differences exist between the sources of water in the different local municipalities from which data was collected. The chi square was use to calculated the differences between the sources of water and the calculated critical value of the District Municipality was 18.77 which is more than the stipulated critical value of 3.84. More people in Mhlontlo Local Municipality got water from the taps while a greater percentage of households in King Sataba Dalindyebo and Ingquza hill local municipalities got their water from the natural sources. 77% of the sample population complained that there have been no improvements in water provision because they still get water from natural sources and even the remaining 33% that were getting water from the taps still have to depend on natural sources because the taps are most of the time broken and it takes a long time to fix them.

Keywords: availability, water, sources, supply

Procedia PDF Downloads 327
10917 System Dynamics Projections of Environmental Issues for Domestic Water and Wastewater Scenarios in Urban Area of India

Authors: Isha Sharawat, R. P. Dahiya, T. R. Sreekrishnan

Abstract:

One of the environmental challenges in India is urban wastewater management as regulations and infrastructural development has not kept pace with the urbanization and growing population. The quality of life of people is also improving with the rapid growth of the gross domestic product. This has contributed to the enhancement in the per capita water requirement and consumption. More domestic water consumption generates more wastewater. The scarcity of potable water is making the situation quite serious, and water supply has to be regulated in most parts of the country during summer. This requires elaborate and concerted efforts to efficiently manage the water resources and supply systems. In this article, a system dynamics modelling approach is used for estimating the water demand and wastewater generation in a district headquarter city of North India. Projections are made till the year 2035. System dynamics is a software tool used for formulation of policies. On the basis of the estimates, policy scenarios are developed for sustainable development of water resources in conformity with the growing population. Mitigation option curtailing the water demand and wastewater generation include population stabilization, water reuse and recycle and water pricing. The model is validated quantitatively, and sensitivity analysis tests are carried out to examine the robustness of the model.

Keywords: system dynamics, wastewater, water pricing, water recycle

Procedia PDF Downloads 254
10916 Investigating Sediment-Bound Chemical Transport in an Eastern Mediterranean Perennial Stream to Identify Priority Pollution Sources on a Catchment Scale

Authors: Felicia Orah Rein Moshe

Abstract:

Soil erosion has become a priority global concern, impairing water quality and degrading ecosystem services. In Mediterranean climates, following a long dry period, the onset of rain occurs when agricultural soils are often bare and most vulnerable to erosion. Early storms transport sediments and sediment-bound pollutants into streams, along with dissolved chemicals. This results in loss of valuable topsoil, water quality degradation, and potentially expensive dredged-material disposal costs. Information on the provenance of fine sediment and priority sources of adsorbed pollutants represents a critical need for developing effective control strategies aimed at source reduction. Modifying sediment traps designed for marine systems, this study tested a cost-effective method to collect suspended sediments on a catchment scale to characterize stream water quality during first-flush storm events in a flashy Eastern Mediterranean coastal perennial stream. This study investigated the Kishon Basin, deploying sediment traps in 23 locations, including 4 in the mainstream and one downstream in each of 19 tributaries, enabling the characterization of sediment as a vehicle for transporting chemicals. Further, it enabled direct comparison of sediment-bound pollutants transported during the first-flush winter storms of 2020 from each of 19 tributaries, allowing subsequent ecotoxicity ranking. Sediment samples were successfully captured in 22 locations. Pesticides, pharmaceuticals, nutrients, and metal concentrations were quantified, identifying a total of 50 pesticides, 15 pharmaceuticals, and 22 metals, with 16 pesticides and 3 pharmaceuticals found in all 23 locations, demonstrating the importance of this transport pathway. Heavy metals were detected in only one tributary, identifying an important watershed pollution source with immediate potential influence on long-term dredging costs. Simultaneous sediment sampling at first flush storms enabled clear identification of priority tributaries and their chemical contributions, advancing a new national watershed monitoring approach, facilitating strategic plan development based on source reduction, and advancing the goal of improving the farm-stream interface, conserving soil resources, and protecting water quality.

Keywords: adsorbed pollution, dredged material, heavy metals, suspended sediment, water quality monitoring

Procedia PDF Downloads 96
10915 Planning of Green Infrastructure on a City Level

Authors: James Li, Darko Joksimovic

Abstract:

Urban development changes the natural hydrologic cycle, resulting in storm water impacts such as flooding, water quality degradation, receiving water erosion, and ecosystem deterioration. An integrated storm water managementapproach utilizing source and conveyance (termed green infrastructure) and end-of-pipe control measures is an effective way to manage urban storm water impacts. This paper focuses onplanning green infrastructure (GI) at the source and along the drainage system on a city level. It consists of (1)geospatial analysis of feasible GI using physical suitability; (2) modelling of cumulative GI's stormwater performance; and (3) cost-effectiveness analysis to prioritize the implementation of GI. A case study of the City of Barrie in Ontario, Canada, was used to demonstrate the GI's planning.

Keywords: cost-effectiveness of storm water controls, green infrastructure, urban storm water, city-level master planning

Procedia PDF Downloads 85
10914 Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology

Authors: Jifang Tao, Fei Gao, Hong Cai, Yuan Jin Zheng, Yuan Dong Gu

Abstract:

Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports.

Keywords: indoor-air quality (IAQ) monitoring, photoacoustic gas sensor, cavity enhancement, integrated gas sensor

Procedia PDF Downloads 647
10913 Rural Water Management Strategies and Irrigation Techniques for Sustainability. Nigeria Case Study; Kwara State

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Water is essential for sustaining life. As a limited resource, effective water management is vital. Water scarcity has become more common due to the effects of climate change, land degradation, deforestation, and population growth, especially in rural communities, which are more susceptible to water-related issues such as water shortage, water-borne disease, et c., due to the unsuccessful implementation of water policies and projects in Nigeria. Since rural communities generate the majority of agricultural products, they significantly impact on water management for sustainability. The development of methods to advance this goal for residential and agricultural usage in the present and the future is a challenge for rural residents. This study evaluated rural water supply systems and irrigation management techniques to conserve water in Kwara State, North-Central Nigeria. Suggesting some measures to conserve water resources for sustainability, off-season farming, and socioeconomic security that will remedy water degradation, unemployment which is one of the causes of insecurity in the country, by considering the use of fabricated or locally made irrigation equipment, which are affordable by rural farmers, among other recommendations. Questionnaires were distributed to respondents in the study area for quantitative evaluation of irrigation methods practices. For physicochemical investigation, samples were also gathered from their available water sources. According to the study's findings, 30 percent of farmers adopted intelligent irrigation management techniques to conserve water resources, saving 45% of the water previously used for irrigation. 70 % of farmers practice seasonal farming. Irrigation water is drawn from river channels, streams, and unlined and unprotected wells. 60% of these rural residents rely on private boreholes for their water needs, while 40% rely on government-supplied rural water. Therefore, the government must develop additional water projects, raise awareness, and offer irrigation techniques that are simple to adapt for water management, increasing socio-economic productivity, security, and water sustainability.

Keywords: water resource management, sustainability, irrigation, rural water management, irrigation management technique

Procedia PDF Downloads 94
10912 Effect of Compaction Energy on the Compaction of Soils with Low Water Content in the Semi-arid Region of Chlef

Authors: Obeida Aiche, Mohamed Khiatine, Medjnoun Amal, Ramdane Bahar

Abstract:

Soil compaction is one of the most challenging tasks in the construction of road embankments, railway platforms, and earth dams. Stability and durability are mainly related to the nature of the materials used and the type of soil in place. However, nature does not always offer the engineer materials with the right water content, especially in arid and semi-arid regions where obtaining the optimum Proctor water content requires the addition of considerable quantities of water. The current environmental context does not allow for the rational use of water, especially in arid and semi-arid regions, where it is preferable to preserve water resources for the benefit of the local population. Low water compaction can be an interesting approach as it promotes the reuse of earthworks materials in their dry or very dry state. Thanks to techniques in the field of soil compaction, such as vibratory compactors, which have made it possible to increase the compaction energy considerably, it is possible for some materials to obtain a satisfactory quality by compacting at low water contents or at least lower than the optimum determined by the Proctor test. This communication deals with the low water content compaction of soils in the semi-arid zone of the Chlef region in Algeria by increasing the compaction energy.

Keywords: compaction, soil, low water content, compaction energy

Procedia PDF Downloads 94
10911 Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia

Authors: Anis Eloud, Mohamed Ben Amor

Abstract:

Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes.

Keywords: water quality, salinity, geothermal, supply pipe

Procedia PDF Downloads 515
10910 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)

Authors: Mohsen Akhlaghi, Tahereh Ebrahimi

Abstract:

Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.

Keywords: multi-criteria decision, sustainable development, topsis, water supply

Procedia PDF Downloads 54
10909 Urbanization and House Water Supply in Nigeria

Authors: Oluronke Odunjo

Abstract:

The world is becoming increasingly urbanized and Nigeria is not left out. One of the indicators of human developments is housing and as such, water is needed by households for survival. This Paper assesses sources of water being used by residents in the newly urbanized areas of Ogbomoso, Southwest, Nigeria. Multistage sampling technique was used and Oke-Adunin Community was purposively selected for the study as it has large concentration of staff and students of Ladoke Akintola University of Technology. The area was captured with Google earth and two hundred and twenty two inhabited houses were found. Questionnaire was the instrument for data collection which was administered using total enumeration technique. Data obtained however, were analyzed with descriptive and inferential statistical analyses. Findings revealed that most of the respondents were male, while 36.03% house owners were between the ages of 46 and 55 years. Sources of water used by residents include well (56.94%), water vendors (17.77%), rain (15.29%) and borehole (3.72%). Distance travelled by house owners to sources of water was as high as 5.06 metres, resulting into stress (30.00 %), depression (25.00%) and aggressiveness (18.75%). Result of correlation analysis between the sources of water of respondents and disease prevalence showed that both rain water and water vendor had very strong positive correlation with typhoid, diarrhea and dysentery, while well water only had positive correlation with dysentery. Recommendations were therefore, proffered towards solving the problems associated with water in the area.

Keywords: newly urbanized area, Ogbomoso, sources of water, residents

Procedia PDF Downloads 189
10908 Relocation of the Air Quality Monitoring Stations Network for Aburrá Valley Based on Local Climatic Zones

Authors: Carmen E. Zapata, José F. Jiménez, Mauricio Ramiréz, Natalia A. Cano

Abstract:

The majority of the urban areas in Latin America face the challenges associated with city planning and development problems, attributed to human, technical, and economical factors; therefore, we cannot ignore the issues related to climate change because the city modifies the natural landscape in a significant way transforming the radiation balance and heat content in the urbanized areas. These modifications provoke changes in the temperature distribution known as “the heat island effect”. According to this phenomenon, we have the need to conceive the urban planning based on climatological patterns that will assure its sustainable functioning, including the particularities of the climate variability. In the present study, it is identified the Local Climate Zones (LCZ) in the Metropolitan Area of the Aburrá Valley (Colombia) with the objective of relocate the air quality monitoring stations as a partial solution to the problem of how to measure representative air quality levels in a city for a local scale, but with instruments that measure in the microscale.

Keywords: air quality, monitoring, local climatic zones, valley, monitoring stations

Procedia PDF Downloads 256
10907 Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin

Authors: Janaína F. Guidolini, Jean P. H. B. Ometto, Angélica Giarolla, Peter M. Toledo, Carlos A. Valera

Abstract:

The water crisis, a major problem of the 21st century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation.

Keywords: conservation of soil and water, environmental laws, river basin, sustainability

Procedia PDF Downloads 268
10906 Water Efficiency: Greywater Recycling

Authors: Melissa Lubitz

Abstract:

Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.

Keywords: greywater, wastewater treatment, water conservation, circular water society

Procedia PDF Downloads 54
10905 The Risk Assessments of Water Quality in Selected White Water River in Malaysia

Authors: Jaffry Zakaria, Nor Azlina Hasbullah

Abstract:

The research on water quality based on 'Water Quality Index' (WQI) has been on the run along Kampar River in Perak State of Malaysia. This study was conducted to achieve several key objective that determe the value of the parameters that were studied based on Water Quality Index (WQI). The parameters include Dissolved Oxygen (DO), pH, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Suspended Solids. In this study, three sampling stations were selected. Through observations from the researchers, several pollutions were found occurring along the research area such as the disposal of waste water directly without treatment from villagers, widespread dumping of solid waste and the development of the surrounding areas that contributed to the pollution of Sungai Kampar in Perak, Malaysia. Sungai Kampar is commonly used for water recreational activities as well as for bathing purposes. Results showed that Sungai Kampar is classified under category III. According to Interim National Water Quality Standard for Malaysia (INWQS), rivers in the third grade are clean but not suitable for river recreational activities. Therefore, there is a requirement to investigate and analysis the water quality of all white water rivers in Malaysia focusing on the area of water activities. The combination of technology and risk management based on risk assessments can help the recreational industry to survive in future.

Keywords: risk assessments, White Water River, water quality index (WQI), Interim National Water Quality Standard for Malaysia (INWQS)

Procedia PDF Downloads 332
10904 Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)

Authors: Wahiba Boudraa, Farah Chettibbi, Meriem Aberkane, Fatma Djamaa, Moussa Houhamdi

Abstract:

The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution.

Keywords: quality microbiology, pollution of water, fecal contamination, physico-chemistry, beaches of Annaba city, Algeria.

Procedia PDF Downloads 335
10903 Designing a Socio-Technical System for Groundwater Resources Management, Applying Smart Energy and Water Meter

Authors: S. Mahdi Sadatmansouri, Maryam Khalili

Abstract:

World, nowadays, encounters serious water scarcity problem. During the past few years, by advent of Smart Energy and Water Meter (SEWM) and its installation at the electro-pumps of the water wells, one had believed that it could be the golden key to address the groundwater resources over-pumping issue. In fact, implementation of these Smart Meters managed to control the water table drawdown for short; but it was not a sustainable approach. SEWM has been considered as law enforcement facility at first; however, for solving a complex socioeconomic problem like shared groundwater resources management, more than just enforcement is required: participation to conserve common resources. The well owners or farmers, as water consumers, are the main and direct stakeholders of this system and other stakeholders could be government sectors, investors, technology providers, privet sectors or ordinary people. Designing a socio-technical system not only defines the role of each stakeholder but also can lubricate the communication to reach the system goals while benefits of each are considered and provided. Farmers, as the key participators for solving groundwater problem, do not trust governments but they would trust a fair system in which responsibilities, privileges and benefits are clear. Technology could help this system remained impartial and productive. Social aspects provide rules, regulations, social objects and etc. for the system and help it to be more human-centered. As the design methodology, Design Thinking provides probable solutions for the challenging problems and ongoing conflicts; it could enlighten the way in which the final system could be designed. Using Human Centered Design approach of IDEO helps to keep farmers in the center of the solution and provides a vision by which stakeholders’ requirements and needs are addressed effectively. Farmers would be considered to trust the system and participate in their groundwater resources management if they find the rules and tools of the system fair and effective. Besides, implementation of the socio-technical system could change farmers’ behavior in order that they concern more about their valuable shared water resources as well as their farm profit. This socio-technical system contains nine main subsystems: 1) Measurement and Monitoring system, 2) Legislation and Governmental system, 3) Information Sharing system, 4) Knowledge based NGOs, 5) Integrated Farm Management system (using IoT), 6) Water Market and Water Banking system, 7) Gamification, 8) Agribusiness ecosystem, 9) Investment system.

Keywords: human centered design, participatory management, smart energy and water meter (SEWM), social object, socio-technical system, water table drawdown

Procedia PDF Downloads 287
10902 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation

Authors: A. K. Tekile, I. L. Kim, J. Y. Lee

Abstract:

Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.

Keywords: stagnant, ultrasonic irradiation, water flow, water quality

Procedia PDF Downloads 186
10901 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: detection, monitoring, process corner, process variation

Procedia PDF Downloads 512
10900 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 579