Search results for: spatial genotype
2147 Identification of 332G>A Polymorphism in Exon 3 of the Leptin Gene and Partially Effects on Body Size and Tail Dimension in Sanjabi Sheep
Authors: Roya Bakhtiar, Alireza Abdolmohammadi, Hadi Hajarian, Zahra Nikousefat, Davood, Kalantar-Neyestanaki
Abstract:
The objective of the present study was to determine the polymorphism in the leptin (332G>A) and its association with biometric traits in Sanjabi sheep. For this purpose, blood samples from 96 rams were taken, and tail length, width tail, circumference tail, body length, body width, and height were simultaneously recorded. PCR was performed using specific primer to amplify 463 bp fragment including exon 3 of leptin gene, and PCR products were digested by Cail restriction enzymes. The 332G>A (at 332th nucleotide of exon 3 leptin gene) that caused an amino acid change from Arg to Gln was detected by Cail (CAGNNNCTG) endonuclease, as the endonuclease cannot cut this region if G nucleotide is located in this position. Three genotypes including GG (463), GA (463, 360and 103 bp) and GG (360 bp and 103 bp) were identified after digestion by enzyme. The estimated frequencies of three genotypes including GG, GA, and AA for 332G>A locus were 0.68, 0.29 and 0.03 and those were 0.18 and 0.82 for A and G alleles, respectively. In the current study, chi-square test indicated that 332G>A positions did not deviate from the Hardy–Weinberg (HW) equilibrium. The most important reason to show HW equation was that samples used in this study belong to three large local herds with a traditional breeding system having random mating and without selection. Shannon index amount was calculated which represent an average genetic variation in Sanjabi rams. Also, heterozygosity estimated by Nei index indicated that genetic diversity of mutation in the leptin gene is moderate. Leptin gene polymorphism in the 332G>A had significant effect on body length (P<0.05) trait, and individuals with GA genotype had significantly the higher body length compared to other individuals. Although animals with GA genotype had higher body width, this difference was not statistically significant (P>0.05). This non-synonymous SNP resulted in different amino acid changes at codon positions111(R/Q). As leptin activity is localized, at least in part, in domains between amino acid residues 106-1406, it is speculated that the detected SNP at position 332 may affect the activity of leptin and may lead to different biological functions. Based to our results, due to significant effect of leptin gene polymorphism on body size traits, this gene may be used a candidate gene for improving these traits.Keywords: body size, Leptin gene, PCR-RFLP, Sanjabi sheep
Procedia PDF Downloads 3412146 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2482145 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm
Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy
Abstract:
There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.Keywords: candidate cultivar, edible seed pumpkin, morphologic parameters, selection
Procedia PDF Downloads 3812144 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 792143 Assessment on the Collective Memory after Alteration of Urban Heritage: Case Study of Hengshan Mansions in Shanghai
Authors: Yueying Chen
Abstract:
A city can be developed through memory, and memory is one of the most important elements for urban contexts. Collective memory is a collection of personal memories that can be preserved with objects, places, and events of heritage, expressing culture through spatial changes. These preserved forms can evoke a sense of community and certain emotions. Collective memory in cities reflects urban spatial alterations and historical developments. It can be preserved and reflected by revitalisation projects. A major current focus in collective memory research is how to identify and preserve memory in an intangible way. The influential elements within the preservation of collective memory mainly include institutions and objects. However, current research lacks the assessment of the collective memory after alterations of urban heritage. The assessment of urban heritage lacks visualization and qualitative methods. The emergence of the application of space syntax can fill in this gap. Hengshan Mansions was a new project in 2015. The original residential area has been replaced with a comprehensive commercial area integrating boutique shopping, upscale restaurants, and creative offices. Hengshan Mansions is located in the largest historic area in Shanghai, and its development is the epitome of the traditional culture in Shanghai. Its alteration is the newest project in this area and presents the new concept of revitalisation of urban heritage. For its physical parts, modern vitality is created, and historical information is preserved at the same time. However, most of the local people are moved away, and its functions are altered a lot. The preservation of its collective memory needs to discuss furtherly. Thus, the article builds a framework to assess the collective memory of urban heritage, including spatial configuration, spatial interaction, and cultural cognition. Then, it selects Hengshan Mansions in Shanghai as a case to analyse the assessed framework. Space syntax can be applied to visualize the assessment. Based on the analysis, the article will explore the influential reasons for the collective memory after alterations and proposes relevant advice for the preservation of the collective memory of urban heritage.Keywords: collective memory, alternation of urban heritage, space syntax, Hengshan Mansions
Procedia PDF Downloads 1402142 Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation
Authors: Chevonne Reynolds, Robert J. Fletcher, Jr, Celine M. Carneiro, Nicole Jennings, Alison Ke, Michael C. LaScaleia, Mbhekeni B. Lukhele, Mnqobi L. Mamba, Muzi D. Sibiya, James D. Austin, Cebisile N. Magagula, Themba’alilahlwa Mahlaba, Ara Monadjem, Samantha M. Wisely, Robert A. McCleery
Abstract:
A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.Keywords: agriculture, biodiversity, composition, configuration, heterogeneity
Procedia PDF Downloads 2622141 Exploring Artistic Creation and Autoethnography in the Spatial Context of Geography
Authors: Sinem Tas
Abstract:
This research paper attempts to study the perspective of personal experience in relation to spatial dynamics and artistic outcomes within the realm of cultural identity. This article serves as a partial analysis within a broader PhD investigation that focuses on the cultural dynamics and political structures behind cultural identity through an autoethnography of narrative while presenting its correlation with artistic creation in the context of space and people. Focusing on the artistic/creative practice project AUTRUI, the primary goal is to analyse and understand the influence of personal experiences and culturally constructed identity as an artist in resulting in the compositional modality of the last image considering self-reflective experience. Referencing the works of Joyce Davidson and Christine Milligan - the scholars who emphasise the importance of emotion and spatial experience in geographical studies contribute to this work as they highlight the significance of emotion across various spatial scales in their work Embodying Emotion Sensing Space: Introducing Emotional Geographies (2004). Their perspective suggests that understanding emotions within different spatial contexts is crucial for comprehending human experiences and interactions with space. Incorporating the insights of scholars like Yi-Fu Tuan, particularly his seminal work Space and Place: The Perspective of Experience (1979), is important for creating an in-depth frame of geographical experience. Tuan's humanistic perspective on space and place provides a valuable theoretical framework for understanding the interplay between personal experiences and spatial contexts. A substantial contextualisation of the geopolitics of Turkey - the implications for national identity and cohesion - will be addressed by drawing an outline of the political and geographical frame as a methodological strategy to understand the dynamics behind this research. Besides the bibliographical reading, the methods used to study this relation are participatory observation, memory work along with memoir analysis, personal interviews, and discussion of photographs and news. The utilisation of the self as data requires the analysis of the written sources with personal engagement. By delving into written sources such as written communications or diaries as well as memoirs, the research gains a firsthand perspective, enriching the analytical depth of the study. Furthermore, the examination of photography and news articles serves as a valuable means of contextualising experiences from a journalist's background within specific geographical settings. The inclusion of interviews with close family members access provides firsthand perspectives and intimate insights rooted in shared experiences within similar geographical contexts, offering complementary insights and diversified viewpoints, enhancing the comprehensiveness of the investigation.Keywords: art, autoethnography, place and space, Turkey
Procedia PDF Downloads 502140 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 4072139 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation
Procedia PDF Downloads 592138 Influence of Urban Microclimates on Human Perceptions and Behavioral Patterns: A Relational Context of Human Parameters in Urban Design
Authors: Naveed Mazhar
Abstract:
Our cities are known to have significant modifying effects on the local climate. The nature of the modifications depends on a range of physical variables, usually assessed at a wide range of spatial scales. Physical spatial dimensions, such as measured parameters of microclimates and their significant influence on human sensations, are known to have far-reaching effects on human thermal comfort and by corollary a force that influences human perception. Less scholarship has thrown light on the subjective dimension and insufficiently demonstrates a relational approach between human behavior and how it is affected by the phenomenon of urban microclimates. Other than identifying gaps in the most recent scholarship and providing future research opportunities, the scope of this study will help improve urban design guidelines and raise framework standards of socially responsive urban design. This study will help equip future professionals to ameliorate the effects of urban microclimates on participant’s perceptions enabling more frequent usage of the outdoor urban spaces. However, it is informed that the physical parameters of an outdoor open space determine psychological human adaptations and is a measure of the degree to which people are willing to adapt to their surroundings. A large amount of research is available related to urban microclimates. However, very few studies are focused on the elucidation of the critical factors influencing human perceptions of the microclimates in urban spatial configurations. Based on the most recent scholarship, this study has evaluated the role urban microclimatic conditions have in the formation of human perceptions and, by extension, behavioral patterns formulating in outdoor open spaces. Furthermore, this study also defines, in the backdrop of the current scholarly literature, the socio-spatial interdependence of behavioral patterns with relationship to the built urban fabric and its resultant correlation with human perception. A comprehensive review and analysis of the recent research conducted within the scope of the study will help frame gaps, issues, current research methods and future research opportunities.Keywords: urban design, urban microcliamate, human perception, human behavioral patterns
Procedia PDF Downloads 3042137 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1552136 Spatial Rank-Based High-Dimensional Monitoring through Random Projection
Authors: Chen Zhang, Nan Chen
Abstract:
High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection
Procedia PDF Downloads 2992135 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data
Authors: Georgiana Onicescu, Yuqian Shen
Abstract:
Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection
Procedia PDF Downloads 1432134 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling
Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey
Abstract:
Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal
Procedia PDF Downloads 1762133 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas
Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi
Abstract:
In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies
Procedia PDF Downloads 3712132 Spatial Variation of Nitrogen, Phosphorus and Potassium Contents of Tomato (Solanum lycopersicum L.) Plants Grown in Greenhouses (Springs) in Elmali-Antalya Region
Authors: Namik Kemal Sonmez, Sahriye Sonmez, Hasan Rasit Turkkan, Hatice Tuba Selcuk
Abstract:
In this study, the spatial variation of plant and soil nutrition contents of tomato plants grown in greenhouses was investigated in Elmalı region of Antalya. For this purpose, total of 19 sampling points were determined. Coordinates of each sampling points were recorded by using a hand-held GPS device and were transferred to satellite data in GIS. Soil samples were collected from two different depths, 0-20 and 20-40 cm, and leaf were taken from different tomato greenhouses. The soil and plant samples were analyzed for N, P and K. Then, attribute tables were created with the analyses results by using GIS. Data were analyzed and semivariogram models and parameters (nugget, sill and range) of variables were determined by using GIS software. Kriged maps of variables were created by using nugget, sill and range values with geostatistical extension of ArcGIS software. Kriged maps of the N, P and K contents of plant and soil samples showed patchy or a relatively smooth distribution in the study areas. As a result, the N content of plants were sufficient approximately 66% portion of the tomato productions. It was determined that the P and K contents were sufficient of 70% and 80% portion of the areas, respectively. On the other hand, soil total K contents were generally adequate and available N and P contents were found to be highly good enough in two depths (0-20 and 20-40 cm) 90% portion of the areas.Keywords: Elmali, nutrients, springs greenhouses, spatial variation, tomato
Procedia PDF Downloads 2432131 Spatial Analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients in Lagos, Nigeria
Authors: Akinsola Oluwatosin, Udofia Samuel, Odofin Mayowa
Abstract:
The study is aimed at assessing the Geographic Information System (GIS)-based spatial analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) cases for Lagos, Nigeria, with an objective to inform priority areas for public health planning and resource allocation. Multi-drug resistant tuberculosis (MDR-TB) develops due to problems such as irregular drug supply, poor drug quality, inappropriate prescription, and poor adherence to treatment. The shapefile(s) for this study were already georeferenced to Minna datum. The patient’s information was acquired on MS Excel and later converted to . CSV file for easy processing to ArcMap from various hospitals. To superimpose the patient’s information the spatial data, the addresses was geocoded to generate the longitude and latitude of the patients. The database was used for the SQL query to the various pattern of the treatment. To show the pattern of disease spread, spatial autocorrelation analysis was used. The result was displayed in a graphical format showing the areas of dispersing, random and clustered of patients in the study area. Hot and cold spot analysis was analyzed to show high-density areas. The distance between these patients and the closest health facility was examined using the buffer analysis. The result shows that 22% of the points were successfully matched, while 15% were tied. However, the result table shows that a greater percentage of it was unmatched; this is evident in the fact that most of the streets within the State are unnamed, and then again, most of the patients are likely to supply the wrong addresses. MDR-TB patients of all age groups are concentrated within Lagos-Mainland, Shomolu, Mushin, Surulere, Oshodi-Isolo, and Ifelodun LGAs. MDR-TB patients between the age group of 30-47 years had the highest number and were identified to be about 184 in number. The outcome of patients on ART treatment revealed that a high number of patients (300) were not ART treatment while a paltry 45 patients were on ART treatment. The result shows the Z-score of the distribution is greater than 1 (>2.58), which means that the distribution is highly clustered at a significance level of 0.01.Keywords: tuberculosis, patients, treatment, GIS, MDR-TB
Procedia PDF Downloads 1522130 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations
Authors: Marta Błażkiewicz-Mazurek, Adam Konefał
Abstract:
The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling
Procedia PDF Downloads 292129 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 182128 Measuring Urban Sprawl in the Western Cape Province, South Africa: An Urban Sprawl Index for Comparative Purposes
Authors: Anele Horn, Amanda Van Eeden
Abstract:
The emphasis on the challenges posed by continued urbanisation, especially in developing countries has resulted in urban sprawl often researched and analysed in metropolitan urban areas, but rarely in small and medium towns. Consequently, there exists no comparative instrument between the proportional extent of urban sprawl in metropolitan areas measured against that of small and medium towns. This research proposes an Urban Sprawl Index as a possible tool to comparatively analyse the extent of urban sprawl between cities and towns of different sizes. The index can also be used over the longer term by authorities developing spatial policy to track the success or failure of specific tools intended to curb urban sprawl. In South Africa, as elsewhere in the world, the last two decades witnessed a proliferation of legislation and spatial policies to limit urban sprawl and contain the physical expansion and development of urban areas, but the measurement of the successes or failures of these instruments intending to curb expansive land development has remained a largely unattainable goal, largely as a result of the absence of an appropriate measure of proportionate comparison. As a result of the spatial political history of Apartheid, urban areas acquired a spatial form that contributed to the formation of single-core cities with far reaching and wide-spreading peripheral development, either in the form of affluent suburbs or as a result of post-Apartheid programmes such as the Reconstruction and Development Programme (1995) which, in an attempt to assist the immediate housing shortage, favoured the establishment of single dwelling residential units for low income communities on single plots on affordable land at the urban periphery. This invariably contributed to urban sprawl and even though this programme has since been abandoned, the trend towards low density residential development continues. The research area is the Western Cape Province in South Africa, which in all aspects exhibit the spatial challenges described above. In academia and popular media the City of Cape Town (the only Metropolitan authority in the province) has received the lion’s share of focus in terms of critique on urban development and spatial planning, however, the smaller towns and cities in the Western Cape arguably received much less public attention and were spared the naming and shaming of being unsustainable urban areas in terms of land consumption and physical expansion. The Urban Sprawl Index for the Western Cape (USIWC) put forward by this research enables local authorities in the Western Cape Province to measure the extent of urban sprawl proportionately and comparatively to other cities in the province, thereby acquiring a means of measuring the success of the spatial instruments employed to limit urban expansion and inefficient land consumption. In development of the USIWC the research made use of satellite data for reference years 2001 and 2011 and population growth data extracted from the national census, also for base years 2001 and 2011.Keywords: urban sprawl, index, Western Cape, South Africa
Procedia PDF Downloads 3292127 Imaging Based On Bi-Static SAR Using GPS L5 Signal
Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan
Abstract:
GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.Keywords: GPS, L5 Signal, SAR, spatial resolution
Procedia PDF Downloads 5342126 Multi-Scale Spatial Difference Analysis Based on Nighttime Lighting Data
Authors: Qinke Sun, Liang Zhou
Abstract:
The ‘Dragon-Elephant Debate’ between China and India is an important manifestation of global multipolarity in the 21st century. The two rising powers have carried out economic reforms one after another in the interval of more than ten years, becoming the fastest growing developing country and emerging economy in the world. At the same time, the development differences between China and India have gradually attracted wide attention of scholars. Based on the continuous annual night light data (DMSP-OLS) from 1992 to 2012, this paper systematically compares and analyses the regional development differences between China and India by Gini coefficient, coefficient of variation, comprehensive night light index (CNLI) and hot spot analysis. The results show that: (1) China's overall expansion from 1992 to 2012 is 1.84 times that of India, in which China's change is 2.6 times and India's change is 2 times. The percentage of lights in unlighted areas in China dropped from 92% to 82%, while that in India from 71% to 50%. (2) China's new growth-oriented cities appear in Hohhot, Inner Mongolia, Ordos, and Urumqi in the west, and the declining cities are concentrated in Liaoning Province and Jilin Province in the northeast; India's new growth-oriented cities are concentrated in Chhattisgarh in the north, while the declining areas are distributed in Uttar Pradesh. (3) China's differences on different scales are lower than India's, and regional inequality of development is gradually narrowing. Gini coefficients at the regional and provincial levels have decreased from 0.29, 0.44 to 0.24 and 0.38, respectively, while regional inequality in India has slowly improved and regional differences are gradually widening, with Gini coefficients rising from 0.28 to 0.32. The provincial Gini coefficient decreased slightly from 0.64 to 0.63. (4) The spatial pattern of China's regional development is mainly east-west difference, which shows the difference between coastal and inland areas; while the spatial pattern of India's regional development is mainly north-south difference, but because the southern states are sea-dependent, it also reflects the coastal inland difference to a certain extent. (5) Beijing and Shanghai present a multi-core outward expansion model, with an average annual CNLI higher than 0.01, while New Delhi and Mumbai present the main core enhancement expansion model, with an average annual CNLI lower than 0.01, of which the average annual CNLI in Shanghai is about five times that in Mumbai.Keywords: spatial pattern, spatial difference, DMSP-OLS, China, India
Procedia PDF Downloads 1552125 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 3032124 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation
Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot
Abstract:
The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution
Procedia PDF Downloads 1222123 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s
Authors: K. M. Damodara Gowda
Abstract:
Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin
Procedia PDF Downloads 2322122 The Spatial and Temporal Distribution of Ambient Benzene, Toluene, Ethylbenzene and Xylene Concentrations at an International Airport in South Africa
Authors: Ryan S. Johnson, Raeesa Moolla
Abstract:
Airports are known air pollution hotspots due to the variety of fuel driven activities that take place within the confines of them. As such, people working within airports are particularly vulnerable to exposure of hazardous air pollutants, including hundreds of aromatic hydrocarbons, and more specifically a group of compounds known as BTEX (viz. benzene, toluene, ethyl-benzene and xylenes). These compounds have been identified as being harmful to human and environmental health. Through the use of passive and active sampling methods, the spatial and temporal variability of benzene, toluene, ethyl-benzene and xylene concentrations within the international airport was investigated. Two sampling campaigns were conducted. In order to quantify the temporal variability of concentrations within the airport, an active sampling strategy using the Synspec Spectras Gas Chromatography 955 instrument was used. Furthermore, a passive sampling campaign, using Radiello Passive Samplers was used to quantify the spatial variability of these compounds. In addition, meteorological factors are known to affect the dispersal and dilution of pollution. Thus a Davis Pro-Weather 2 station was utilised in order to measure in situ weather parameters (viz. wind speed, wind direction and temperature). Results indicated that toluene varied on a daily, temporal scale considerably more than other concentrations. Toluene further exhibited a strong correlation with regards to the meteorological parameters, inferring that toluene was affected by these parameters to a greater degree than the other pollutants. The passive sampling campaign revealed BTEXtotal concentrations ranged between 12.95 – 124.04 µg m-3. From the results obtained it is clear that benzene, toluene, ethyl-benzene and xylene concentrations are heterogeneously spatially dispersed within the airport. Due to the slow wind speeds recorded over the passive sampling campaign (1.13 m s-1.), the hotspots were located close to the main concentration sources. The most significant hotspot was located over the main apron of the airport. It is recommended that further, extensive investigations into the seasonality of hazardous air pollutants at the airport is necessary in order for sound conclusions to be made about the temporal and spatial distribution of benzene, toluene, ethyl-benzene and xylene concentrations within the airport.Keywords: airport, air pollution hotspot, BTEX concentrations, meteorology
Procedia PDF Downloads 2042121 Spatial Analysis of Flood Vulnerability in Highly Urbanized Area: A Case Study in Taipei City
Authors: Liang Weichien
Abstract:
Without adequate information and mitigation plan for natural disaster, the risk to urban populated areas will increase in the future as populations grow, especially in Taiwan. Taiwan is recognized as the world's high-risk areas, where an average of 5.7 times of floods occur per year should seek to strengthen coherence and consensus in how cities can plan for flood and climate change. Therefore, this study aims at understanding the vulnerability to flooding in Taipei city, Taiwan, by creating indicators and calculating the vulnerability of each study units. The indicators were grouped into sensitivity and adaptive capacity based on the definition of vulnerability of Intergovernmental Panel on Climate Change. The indicators were weighted by using Principal Component Analysis. However, current researches were based on the assumption that the composition and influence of the indicators were the same in different areas. This disregarded spatial correlation that might result in inaccurate explanation on local vulnerability. The study used Geographically Weighted Principal Component Analysis by adding geographic weighting matrix as weighting to get the different main flood impact characteristic in different areas. Cross Validation Method and Akaike Information Criterion were used to decide bandwidth and Gaussian Pattern as the bandwidth weight scheme. The ultimate outcome can be used for the reduction of damage potential by integrating the outputs into local mitigation plan and urban planning.Keywords: flood vulnerability, geographically weighted principal components analysis, GWPCA, highly urbanized area, spatial correlation
Procedia PDF Downloads 2862120 Identification of Parameters for Urban and Regional Level Infrastructure Development - A Theoretical Perspective: Case Study – Rail Based Mass Transit in Indian Cities
Authors: Chitresh Kumar, Santanu Gupta
Abstract:
The research work intends to understand the process of initiation, planning and development of capital-intensive urban area level infrastructure development in East Asian Cities (specific to Indian Cities). With the onset of emphasis on sustainable urban transport, self-financed urban local bodies, it has become of utmost important to identify infrastructure and projects on a priority basis, which provide optimal utility to the urban area. Through identification of Spatial, Demographic and Socio-Economic and Political Instability Parameters and their trends for the past 60 years at the urban area and state level, the paper attempts to identify the most suitable time period when initiation of the project would become economically and demographically viable for the city.Keywords: urban planning, regional planning, mass transit, infrastructure development, spatial planning
Procedia PDF Downloads 5562119 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia
Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta
Abstract:
Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia
Procedia PDF Downloads 562118 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 352