Search results for: smart material systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15852

Search results for: smart material systems

15282 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 31
15281 Smart Web Services in the Web of Things

Authors: Sekkal Nawel

Abstract:

The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.

Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL

Procedia PDF Downloads 52
15280 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy

Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko

Abstract:

A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.

Keywords: diffusion brazing, microstructure, superalloy, tensile strength

Procedia PDF Downloads 350
15279 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 56
15278 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion

Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng

Abstract:

The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.

Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear

Procedia PDF Downloads 286
15277 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 76
15276 Keeping Education Non-Confessional While Teaching Children about Religion

Authors: Tünde Puskás, Anita Andersson

Abstract:

This study is part of a research project about whether religion is considered as part of Swedish cultural heritage in Swedish preschools. Our aim in this paper is to explore how a Swedish preschool balance between keeping the education non-confessional and at the same time teaching children about a particular tradition, Easter.The paper explores how in a Swedish preschool with a religious profile teachers balance between keeping education non-confessional and teaching about a tradition with religious roots. The point of departure for the theoretical frame of our study is that practical considerations in pedagogical situations are inherently dilemmatic. The dilemmas that are of interest for our study evolve around formalized, intellectual ideologies, such us multiculturalism and secularism that have an impact on everyday practice. Educational dilemmas may also arise in the intersections of the formalized ideology of non-confessionalism, prescribed in policy documents and the common sense understandings of what is included in what is understood as Swedish cultural heritage. In this paper, religion is treated as a human worldview that, similarly to secular ideologies, can be understood as a system of thought. We make use of Ninian Smart's theoretical framework according to which in modern Western world religious and secular ideologies, as human worldviews, can be studied from the same analytical framework. In order to be able to study the distinctive character of human worldviews Smart introduced a multi-dimensional model within which the different dimensions interact with each other in various ways and to different degrees. The data for this paper is drawn from fieldwork carried out in 2015-2016 in the form of video ethnography. The empirical material chosen consists of a video recording of a specific activity during which the preschool group took part in an Easter play performed in the local church. The analysis shows that the policy of non-confessionalism together with the idea that teaching covering religious issues must be purely informational leads in everyday practice to dilemmas about what is considered religious. At the same time what the adults actually do with religion fulfills six of seven dimensions common to religious traditions as outlined by Smart. What we can also conclude from the analysis is that whether it is religion or a cultural tradition that is thought through the performance the children watched in the church depends on how the concept of religion is defined. The analysis shows that the characters of the performance themselves understood religion as the doctrine of Jesus' resurrection from the dead. This narrow understanding of religion enabled them indirectly to teach about the traditions and narratives surrounding Easter while avoiding teaching religion as a belief system.

Keywords: non-confessional education, preschool, religion, tradition

Procedia PDF Downloads 151
15275 Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games

Authors: Wann-Yun Shieh, Hsin-Yi Kathy Cheng, Yan-Ying Ju, Yu-Chun Yu, Ya-Cheng Shieh

Abstract:

Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted.

Keywords: cognition, intellectual disabilities, movement coordination, smart ball

Procedia PDF Downloads 62
15274 IoT Based Monitoring Temperature and Humidity

Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya

Abstract:

Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.

Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS

Procedia PDF Downloads 266
15273 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 120
15272 Palestine Smart Tourism Augmented Reality Mobile Application

Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh

Abstract:

Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.

Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine

Procedia PDF Downloads 158
15271 Bridging Consumer Farmer Mobile Application Divide

Authors: Ana Hol

Abstract:

Technological inventions such as websites, blogs, smartphone applications are on a daily basis influencing our decision making, are improving our productivity and are shaping futures of many consumer and service/product providers. This research identifies that these days both customers and providers heavily rely on smart phone applications. With this in mind, iTunes mobile applications store has been studies. It was identified that food related applications used by consumers can broadly be categorized into purchase apps, diaries, tracking health apps, trip farm location apps and cooking apps. On the other hand, apps used by farmers can be classified as: weather apps, pests / fertilizer app and general Facebook apps. With the aim to blur this farmer-consumer divide our research utilizes Context Specific eTransformation Framework and based on it identifies characteristic of the app that would allow this to happen.

Keywords: smart phone applications, SME - farmers, consumer, technology, business innovation

Procedia PDF Downloads 373
15270 Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House

Authors: Thet Su Hlaing, Shoichi Kojima

Abstract:

The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption.

Keywords: bamboo house, hot and humid climate, indoor thermal comfort, local indigenous roofing material

Procedia PDF Downloads 161
15269 Embedding the Dimensions of Sustainability into City Information Modelling

Authors: Ali M. Al-Shaery

Abstract:

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city,' and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embedding sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

Keywords: information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning

Procedia PDF Downloads 319
15268 Smart Alert System for Dangerous Bend

Authors: Sathapath Kilaso

Abstract:

Thailand has a large range of geographic diversity. Thailand can be divided into 5 regions which are North Region, East Region, West Region, South Region and North-East Region which each region has a different geographic and climate. Especially in North Region, the geographic is mountain and intermontane plateau which will be a reason that the roads in the North Region have a lot of bends. So the driver in the North Region road will have to have a very high skill of driving. If the accident is occurred, the emergency rescue will have a hard time to reach the accident area and rescue the victim of the accident as the long distance and steep road. This article will apply the concept of the wireless sensor network with the micro-controller to alert the driver when the driver reaches the very dangerous bend.

Keywords: wireless sensor network, motion sensor, smart alert, dangerous bend

Procedia PDF Downloads 266
15267 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 278
15266 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media

Authors: Karen B. Ghazaryan

Abstract:

Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.

Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials

Procedia PDF Downloads 207
15265 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material

Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike

Abstract:

Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.

Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance

Procedia PDF Downloads 260
15264 Preliminary Study of Desiccant Cooling System under Algerian Climates

Authors: N. Hatraf, N. Moummi

Abstract:

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Keywords: dehumidification, efficiency, humidity, Trnsys

Procedia PDF Downloads 428
15263 Review of Dielectric Permittivity Measurement Techniques

Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody

Abstract:

The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.

Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator

Procedia PDF Downloads 357
15262 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 204
15261 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 171
15260 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 546
15259 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour

Authors: Cecilia Perri, Vincenzo Corvello

Abstract:

The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.

Keywords: adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour

Procedia PDF Downloads 396
15258 High Temperature Behaviour of Various Limestone Used in Heritage Buildings at Material and Block Scales

Authors: Ayoub Daoudi, Javad Eslami, Anne-Lise Beaucour, Martin Vigroux, Albert Noumowé

Abstract:

As a fact, many cultural heritage masonry buildings have undergone violent fires during their history. In order to investigate the high temperature behaviour of stone masonry, six French limestones were heated to 600 °C at a rate of 9 °C/min. The main focus is the comparison between the high temperature behaviour of stones at the material and at the structural scale. In order to evaluate the risk of spalling, the tests have been carried out on the stone blocks (12x30x30 cm) instrumented with thermocouples and subjected to an unidirectional heating on one face. Thereafter, visual assessments and non-destructive measurements (dynamic elastic modulus) performed on blocks demonstrate a different behaviour from what was observed at the material scale. Finally, a series of thermo-mechanical computations, using finite element method, allowed us to highlight the difference between the behaviour of stones at material and block scales.

Keywords: limestones, hight temperature behaviour, damage, thermo-mechanical modeling, material and blocks scales, color change

Procedia PDF Downloads 96
15257 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 142
15256 Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material

Authors: Svetlana Trifonova Djambova, Natalia Bobeva Ivanova, Roumiana Asenova Zaharieva

Abstract:

Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials.

Keywords: airborne sound insulation, heat insulation products, mineral wool, recycled textile material

Procedia PDF Downloads 179
15255 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 67
15254 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites

Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim

Abstract:

The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.

Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 345
15253 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 135