Search results for: signal generator-fault indicator
1931 LIFirr with an Indicator of Microbial Activity in Paraffinic Oil
Authors: M. P. Casiraghi, C. M. Quintella, P. Almeida
Abstract:
Paraffinic oils were submitted to microbial action. The microorganisms consisted of bacteria of the genera Pseudomonas sp and Bacillus lincheniforms. The alterations in interfacial tension were determined using a tensometer and applying the hanging drop technique at room temperature (299 K ±275 K). The alteration in the constitution of the paraffins was evaluated by means of gas chromatography. The microbial activity was observed to reduce interfacial tension by 54 to 78%, as well as consuming the paraffins C19 to C29 and producing paraffins C36 to C44. The LIFirr technique made it possible to determine the microbial action quickly.Keywords: paraffins, biosurfactants, LIFirr, microbial activity
Procedia PDF Downloads 5321930 Assessment of Obesity Parameters in Terms of Metabolic Age above and below Chronological Age in Adults
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Chronologic age (CA) of individuals is closely related to obesity and generally affects the magnitude of obesity parameters. On the other hand, close association between basal metabolic rate (BMR) and metabolic age (MA) is also a matter of concern. It is suggested that MA higher than CA is the indicator of the need to improve the metabolic rate. In this study, the aim was to assess some commonly used obesity parameters, such as obesity degree, visceral adiposity, BMR, BMR-to-weight ratio, in several groups with varying differences between MA and CA values. The study comprises adults, whose ages vary between 18 and 79 years. Four groups were constituted. Group 1, 2, 3 and 4 were composed of 55, 33, 76 and 47 adults, respectively. The individuals exhibiting -1, 0 and +1 for their MA-CA values were involved in Group 1, which was considered as the control group. Those, whose MA-CA values varying between -5 and -10 participated in Group 2. Those, whose MAs above their real ages were divided into two groups [Group 3 (MA-CA; from +5 to + 10) and Group 4 (MA-CA; from +11 to + 12)]. Body mass index (BMI) values were calculated. TANITA body composition monitor using bioelectrical impedance analysis technology was used to obtain values for obesity degree, visceral adiposity, BMR and BMR-to-weight ratio. The compiled data were evaluated statistically using a statistical package program; SPSS. Mean ± SD values were determined. Correlation analyses were performed. The statistical significance degree was accepted as p < 0.05. The increase in BMR was positively correlated with obesity degree. MAs and CAs of the groups were 39.9 ± 16.8 vs 39.9 ± 16.7 years for Group 1, 45.0 ± 15.3 vs 51.4 ± 15.7 years for Group 2, 47.2 ± 12.7 vs 40.0 ± 12.7 years for Group 3, and 53.6 ± 14.8 vs 42 ± 14.8 years for Group 4. BMI values of the groups were 24.3 ± 3.6 kg/m2, 23.2 ± 1.7 kg/m2, 30.3 ± 3.8 kg/m2, and 40.1 ± 5.1 kg/m2 for Group 1, 2, 3 and 4, respectively. Values obtained for BMR were 1599 ± 328 kcal in Group 1, 1463 ± 198 kcal in Group 2, 1652 ± 350 kcal in Group 3, and 1890 ± 360 kcal in Group 4. A correlation was observed between BMR and MA-CA values in Group 1. No correlation was detected in other groups. On the other hand, statistically significant correlations between MA-CA values and obesity degree, BMI as well as BMR/weight were found in Group 3 and in Group 4. It was concluded that upon consideration of these findings in terms of MA-CA values, BMR-to-weight ratio was found to be much more useful indicator of the severe increase in obesity development than BMR. Also, the lack of associations between MA and BMR as well as BMR-to-weight ratio emphasize the importance of consideration of MA-CA values rather than MA.Keywords: basal metabolic rate, basal metabolic rate-to-weight-ratio, chronologic age, metabolic age, obesity degree
Procedia PDF Downloads 1001929 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms
Authors: Henni Mansour Abdelwaheb
Abstract:
This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties
Procedia PDF Downloads 821928 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.Keywords: HVOF, residual stress, thermal spray, WC-Co
Procedia PDF Downloads 3171927 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1111926 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter
Authors: Asma Ben Rhouma, Mahmoud Hamouda
Abstract:
The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.Keywords: delta inverter, SPWM, simulation, DSP implementation
Procedia PDF Downloads 1651925 New NIR System for Detecting the Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 4031924 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 3881923 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 791922 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software
Authors: Mohamed Mesbah, Bruce Janson
Abstract:
An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment
Procedia PDF Downloads 451921 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 1051920 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections
Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh
Abstract:
Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.Keywords: delay, saturation flow, signalised intersection, vehicle composition
Procedia PDF Downloads 4691919 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique
Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song
Abstract:
For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the designKeywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter
Procedia PDF Downloads 3411918 Development and Validation of the Circular Economy Scale
Authors: Yu Fang Chen, Jeng Fung Hung
Abstract:
This study aimed to develop a circular economy scale to assess the level of recognition among high-level executives in businesses regarding the circular economy. The circular economy is crucial for global ESG sustainable development and poses a challenge for corporate social responsibility. The aim of promoting the circular economy is to reduce resource consumption, move towards sustainable development, reduce environmental impact, maintain ecological balance, increase economic value, and promote employment. This study developed a 23-item Circular Economy Scale, which includes three subscales: "Understanding of Circular Economy by Enterprises" (8 items), "Attitudes" (9 items), and "Behaviors" (6 items). The Likert 5-point scale was used to measure responses, with higher scores indicating higher levels of agreement among senior executives with regard to the circular economy. The study tested 105 senior executives and used a structural equation model (SEM) as a measurement indicator to determine the extent to which potential variables were measured. The standard factor loading of the measurement indicator needs to be higher than 0.7, and the average variance explained (AVE) represents the index of convergent validity, which should be greater than 0.5 or at least 0.45 to be acceptable. Out of the 23 items, 12 did not meet the standard, so they were removed, leaving 5 items, 3 items, and 3 items for each of the three subscales, respectively, all with a factor loading greater than 0.7. The AVE for all three subscales was greater than 0.45, indicating good construct validity. The Cronbach's α reliability values for the three subscales were 0.887, 0.787, and 0.734, respectively, and the total scale was 0.860, all of which were higher than 0.7, indicating good reliability. The Circular Economy Scale developed in this study measures three conceptual components that align with the theoretical framework of the literature review and demonstrate good reliability and validity. It can serve as a measurement tool for evaluating the degree of acceptance of the circular economy among senior executives in enterprises. In the future, this scale can be used by senior executives in enterprises as an evaluation tool to further explore its impact on sustainable development and to promote circular economy and sustainable development based on the reference provided.Keywords: circular economy, corporate social responsibility, scale development, structural equation model
Procedia PDF Downloads 881917 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 3171916 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss
Procedia PDF Downloads 4861915 The Non-Linear Analysis of Brain Response to Visual Stimuli
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5651914 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1751913 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network
Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5091912 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish
Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb
Abstract:
This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters
Procedia PDF Downloads 3161911 New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials
Authors: B. Makhlouf, O. Bouchhida, M. Nibouche, K. Laidi
Abstract:
A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory.Keywords: harmonic elimination, Particle Swarm Optimisation (PSO), polynomial interpolation, pulse width modulation, real-time harmonics control, voltage inverter
Procedia PDF Downloads 5061910 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor
Authors: Tian-Fang Kang, Xue Sun
Abstract:
DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.Keywords: DNA damage, detection, electrochemiluminescence, sensor
Procedia PDF Downloads 4111909 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5361908 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals
Authors: Bahattin Kanal, Nursel Akçam
Abstract:
Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.Keywords: HyperLynx, printed circuit board, s parameters, ethernet
Procedia PDF Downloads 411907 Coordination of Traffic Signals on Arterial Streets in Duhok City
Authors: Dilshad Ali Mohammed, Ziyad Nayef Shamsulddin Aldoski, Millet Salim Mohammed
Abstract:
The increase in levels of traffic congestion along urban signalized arterials needs efficient traffic management. The application of traffic signal coordination can improve the traffic operation and safety for a series of signalized intersection along the arterials. The objective of this study is to evaluate the benefits achievable through actuated traffic signal coordination and make a comparison in control delay against the same signalized intersection in case of being isolated. To accomplish this purpose, a series of eight signalized intersections located on two major arterials in Duhok City was chosen for conducting the study. Traffic data (traffic volumes, link and approach speeds, and passenger car equivalent) were collected at peak hours. Various methods had been used for collecting data such as video recording technique, moving vehicle method and manual methods. Geometric and signalization data were also collected for the purpose of the study. The coupling index had been calculated to check the coordination attainability, and then time space diagrams were constructed representing one-way coordination for the intersections on Barzani and Zakho Streets, and others represented two-way coordination for the intersections on Zakho Street with accepted progression bandwidth efficiency. The results of this study show great progression bandwidth of 54 seconds for east direction coordination and 17 seconds for west direction coordination on Barzani Street under suggested controlled speed of 60 kph agreeable with the present data. For Zakho Street, the progression bandwidth is 19 seconds for east direction coordination and 18 seconds for west direction coordination under suggested controlled speed of 40 kph. The results show that traffic signal coordination had led to high reduction in intersection control delays on both arterials.Keywords: bandwidth, congestion, coordination, traffic, signals, streets
Procedia PDF Downloads 3121906 Design of Labview Based DAQ System
Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid
Abstract:
The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.Keywords: data acquisition, labview, signal conditioning, national instruments
Procedia PDF Downloads 4971905 Impact of Geomagnetic Storm on Ionosphere
Authors: Affan Ahmed
Abstract:
This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling
Procedia PDF Downloads 151904 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 1041903 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 3941902 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 122