Search results for: permanent magnet machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3463

Search results for: permanent magnet machine

2893 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality

Authors: Aulia Fitri

Abstract:

This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.

Keywords: human translation, machine translation (MT), translation quality, linguistic tool

Procedia PDF Downloads 323
2892 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach

Authors: Hamed Rahmani, Wim Groot

Abstract:

The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.

Keywords: NEET youth, probit, CART, machine learning, unemployment

Procedia PDF Downloads 108
2891 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
2890 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

Authors: C. E. Nugraheni, L. Abednego

Abstract:

This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as meta-heuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.

Keywords: hyper-heuristics, evolutionary algorithms, production scheduling, meta-heuristic

Procedia PDF Downloads 381
2889 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 92
2888 Simulation-Based Validation of Safe Human-Robot-Collaboration

Authors: Titanilla Komenda

Abstract:

Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.

Keywords: human-machine-system, human-robot-collaboration, safety, simulation

Procedia PDF Downloads 361
2887 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
2886 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 56
2885 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 278
2884 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 89
2883 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 324
2882 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 71
2881 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 268
2880 The Effect of Family SES (Income) On Children’s Socio-Emotional Development

Authors: Xiao Hu

Abstract:

Children’s social and emotional development is critical for developing their future relationships and behaviors, and poor social skills may result in serious emotional externalizations such as anxiety, distress and aggression. Recent research has emphasized the role of family socio-economic status on children’s emotional development, and this study contributes to this academic discussion by reviewing how socio-economic status affects children at three critical development stages: infancy (0-3months), pre-school (4 months-5 years) and school aged (6-10 years). Results show a consensus in the research literature on a positive relationship between family socio-economic status and children’s emotional development. Socialization, a crucial development milestone, is highly affected by a family’s socio-economic status, as families with higher incomes have access to improved social environments, healthier parenting styles and greater access to social capital and peer support. In contrast, families with lower income and SES (socio-economic status) have lower access to these benefits and are frequently ignored within social environments. This review concludes with a critical discussion on how family income affects children’s social environment, highlighting the important role that “permanent” income plays in children’s development. Consequently, the review suggests that future governments should provide temporary economic support for lower-income families, allowing children to be raised in a healthy social environment with limited economic fluctuation.

Keywords: family socio-economic status, parenting style, children’s emotional development, family permanent income

Procedia PDF Downloads 141
2879 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 174
2878 Adaptable Buildings for More Sustainable Housing: Energy Life Cycle Analysis

Authors: Rafael Santos Fischer, Aloísio Leoni Schmid, Amanda Dalla-Bonna

Abstract:

The life cycle analysis and the energy life cycle analysis are useful design support tools when sustainability becomes imperative. The final phase of buildings life cycle is probably the least known, on which less knowledge is available. In the Brazilian building industry, the lifespan of a building design rarely is treated as a definite design parameter. There is rather a common sense attitude to take any building demands as permanent, and to take for granted that buildings solutions are durable and solid. Housing, being a permanent issue in any society, presents a real challenge to the choice of a design lifespan. In Brazilian history, there was a contrast of the native solutions of collective, non-durable houses built by several nomadic tribes, and the stone and masonry buildings introduced by the sedentary Portuguese conquerors. Durable buildings are commonly associated with welfare. However, social dynamics makes traditional families of both parents and children be just one of several possible arrangements. In addition, a more liberal attitude towards family leads to an increase in the number of people living in alternative arrangements. Japan is an example of country where houses have been made intentionally ephemeral since the half of 20th century. The present article presents the development of a flexible housing design solution on the basis of the Design Science Research approach. A comparison in terms of energy life cycle shows how flexibility and dematerialization may point at a feasible future for housing policies in Brazil.

Keywords: adaptability, adaptable building, embodied energy, life cyclce analysis, social housing

Procedia PDF Downloads 589
2877 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 101
2876 Supply Chains Resilience within Machine-Made Rug Producers in Iran

Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz

Abstract:

In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.

Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience

Procedia PDF Downloads 164
2875 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
2874 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 106
2873 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency

Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv

Abstract:

Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.

Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine

Procedia PDF Downloads 291
2872 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter

Procedia PDF Downloads 355
2871 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 313
2870 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks

Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua

Abstract:

Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.

Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness

Procedia PDF Downloads 13
2869 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 179
2868 Significance of Transient Data and Its Applications in Turbine Generators

Authors: Chandra Gupt Porwal, Preeti C. Porwal

Abstract:

Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.

Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points

Procedia PDF Downloads 70
2867 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 525
2866 A New Approach towards the Development of Next Generation CNC

Authors: Yusri Yusof, Kamran Latif

Abstract:

Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.

Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC

Procedia PDF Downloads 516
2865 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction

Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani

Abstract:

In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.

Keywords: zeolite, magnetic, nanocompsite, esterification

Procedia PDF Downloads 462
2864 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 149