Search results for: moisture conditioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1229

Search results for: moisture conditioning

659 Effects of Pretreated Rice Bran on Wheat Dough Performance and Barbari Bread Quality

Authors: E. Ataye-Salehi, P. Taghinia, Z. Sheikholeslami

Abstract:

In this research, roasted and sonicated rice bran were added at 0, 5%, 10%, and 15% (w/w) in wheat flour for the production of Barbari bread (semi-voluminous Iranian bread). Dough's rheological properties and textural and sensory characteristics of bread were investigated. The results showed that water absorption, development time and the degree of dough softening were increased, but dough stability was decreased by adding pretreated rice bran. Adding pretreated rice bran was increased, the moisture content and L* value of bread crust. The texture of samples which contained 10% pretreated rice bran during 3 hours after baking was less stiff than of control. But 48 hours after baking there was no significant difference between samples which contained 5%, 10% of rice bran and the sample without rice bran. Finally, the samples with 10% rice bran were selected as the best productive samples in this research by panelists.

Keywords: Barbari bread, rice bran, roasting, ultrasound

Procedia PDF Downloads 283
658 Impact of Pretreated Rice Bran on Wheat Dough Performance and Barbari Bread Quality

Authors: P. Taghinia, E. Ataye-Salehi, Z. Sheikholeslami

Abstract:

In this research, roasted and sonicated rice bran were added at 0, 5%, 10%, and 15% (w/w) in wheat flour for the production of Barbari breead (semi-voluminous Iranian bread). Dough's rheological properties and textural and sensory characteristics of bread were investigated. The results showed that water absorption, development time and the degree of dough softening were increased but dough stability was decreased by adding pretreated rice bran. Adding pretreated rice bran was increased, the moisture content and L* value of bread crust. The texture of samples which contained 10% pretreated rice bran during 3 hours after baking was less stiff than of control, but 48 hours after baking there was no significant difference between samples which contained 5%, 10% of rice bran and the sample without rice bran. Finally, the samples with 10% rice bran were selected as the best productive samples in this research by panelists.

Keywords: Barbari bread, rice bran, roasting, ultrasound

Procedia PDF Downloads 401
657 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China

Authors: Ruobing Liang, Jili Zhang, Chao Zhou

Abstract:

A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.

Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis

Procedia PDF Downloads 413
656 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 334
655 Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst

Authors: Ene Rosemary Ndidiamaka, Nwangwu Florence Chinyere

Abstract:

The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production.

Keywords: biodiesel, catalyst, melon seed, transesterification

Procedia PDF Downloads 357
654 Effect of Filter Paper Technique in Measuring Hydraulic Capacity of Unsaturated Expansive Soil

Authors: Kenechi Kurtis Onochie

Abstract:

This paper shows the use of filter paper technique in the measurement of matric suction of unsaturated expansive soil around the Haspolat region of Lefkosa, North Cyprus in other to establish the soil water characteristics curve (SWCC) or soil water retention curve (SWRC). The dry filter paper approach which is standardized by ASTM, 2003, D 5298-03 in which the filter paper is initially dry was adopted. The whatman No. 42 filter paper was used in the matric suction measurement. The maximum dry density of the soil was obtained as 2.66kg/cm³ and the optimum moisture content as 21%. The soil was discovered to have high air entry value of 1847.46KPa indicating finer particles and 25% hydraulic capacity using filter paper technique. The filter paper technique proved to be very useful for measuring the hydraulic capacity of unsaturated expansive soil.

Keywords: SWCC, matric suction, filter paper, expansive soil

Procedia PDF Downloads 164
653 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach

Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp

Abstract:

The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.

Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation

Procedia PDF Downloads 170
652 Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers

Authors: J. Hroudova, J. Zach, L. Vodova

Abstract:

When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.

Keywords: insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin

Procedia PDF Downloads 227
651 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 419
650 Unpacking Tourist Experience: A Case Study of Chinese Tourists Visiting the UK

Authors: Guanhao Tong, Li Li, Ben David

Abstract:

This study aims to provide an explanatory account of how the leisure tourist experience emerges from tourists and their surroundings through a critical realist lens. This was achieved by applying Archer’s realist social theory as the underlying theoretical ground to unpack the interplays between the external (tourism system or structure) and the internal (tourists or agency). This theory argues that social phenomena can be analyzed in three domains - structure, agency, and culture (SAC), and along three phases – structure conditioning, sociocultural interactions, and structure elaboration. From the realist perspective, the world is an open system; events and discourses are irreducible to present individuals and collectivities. Therefore, identifying the processes or mechanisms is key to help researchers understand how social reality is brought about. Based on the contextual nature of the tourist experience, the research focuses on Chinese tourists (from mainland China) to London as a destination and British culture conveyed through the concept of the destination image. This study uses an intensive approach based on Archer’s M/M approach to discover the mechanisms/processes of the emergence of the tourist experience. Individual interviews were conducted to reveal the underlying causes of lived experiences of the tourists. Secondary data was also collected to understand how British destinations are portrayed to Chinese tourists.

Keywords: Chinese tourists, destination image, M/M approach, realist social theory, social mechanisms, tourist experience

Procedia PDF Downloads 69
649 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: fruit growing, fruits trees, productivity, rural development

Procedia PDF Downloads 254
648 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 68
647 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 252
646 Determination of Heavy Metal Concentration in Soil from Flood Affected Area

Authors: Nor Sayzwani Sukri, Siti Hajar Ya’acob, Musfiroh Jani, Farah Khaliz Kedri, Noor Syuhadah Subki, Zulhazman Hamzah

Abstract:

In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities.

Keywords: flood, soil, heavy metal, AAS

Procedia PDF Downloads 414
645 Investigation of Night Cooling Event, Experimental Radiator

Authors: Fatemeh Karampour

Abstract:

In the hot climate countries, especially those countries with great desert area, such as Iran, a considerable part of the energy is consumed due to cooling and air conditioning system in a hot season. So it is important to find a renewable energy supply for cooling systems. Although, there are few consistent researches in this field of renewable energy in compare with other fields. This research is presenting a study on performance of a night cooling radiator and working fluid storage for night time operation and day time resting periods. In these experiments, we didn’t expose any heating load but focused only on the possibility of system combination and its potential cooling effect. A very simple radiator has been designed in south of Iran, Shiraz, in order to perform this study. The radiator has been insulated with polystyrene foam and bubbled plastic sheets have been used as top cover. Using a single bubbled plastic sheet, the radiator temperature reached 0°C which is 20°C lower than minimum ambient temperature. Putting a small storage tank in the line increased the radiator’s minimum temperature at night; however, provided some cool fluid source for hot days of Shiraz that easily reaches 40°C. The results have shown very good cooling potential without heating load and acceptable temperature increasing during hot day with a small, short term storage tank. Future studies can make the system more effective and applicable.

Keywords: night cooling, experimental set up, cooling radiator, chill storage

Procedia PDF Downloads 143
644 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 390
643 In vitro Disaggregation and Dissolution of Four IR Lamotrigine Solid Dosage Forms

Authors: Ilaria Manca, Ilaria Manca, Francesca Pettinau, Ignazia Mocci, Elisabetta M. Usai, Barbara Pittau

Abstract:

Lamotrigine is a phenyltriazine used in the treatment of epilepsy and bipolar disorder type I. The purpose of this study was to test and compare various solid forms of immediate release (IR) lamotrigine products, at different strenghts, in order to study their disaggregation and dissolution behavior. IR products are designed to release their active substance promptly after administration. Concentration of hydrochloric acid in gastric juice is about 0.1-0.001 M, so FDA (Food and Drug Administration) recommends, for lamotrigine regular tablets, dissolution tests in HCl 0.1 M.Toinvestigate the pH dependency of drug release in the entire gastrointestinal tract, we worked at two additional media with different pH values (4.5 and 6.8), that reflect conditions in it. To afford acceptable dissolution rates, tablets must disintegrate. Disaggregation of constituent particles increases the surface area and substantially increases the dissolution rate. For this reason availability of an active substance from tablets depends on its ability to disintegrate fast in dissolution media. pH of gastrointestinal fluid affects drug absorption by conditioning its solubility and dissolution, but also tablet disintegration may be influenced by it. To obtain information about the quantitative relationship between different mixture components, Nuclear Magnetic Resonance (NMR) spectroscopy was used. We also investigate tablet hardness. The investigation carried out confirms pH 1.2 as the ideal environment for the immediate availability of the active substance.

Keywords: dissolution, disaggregation, Lamotrigine, bioequivalence

Procedia PDF Downloads 448
642 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 434
641 Characterization and Geographical Differentiation of Yellow Prickly Pear Produced in Different Mediterranean Countries

Authors: Artemis Louppis, Michalis Constantinou, Ioanna Kosma, Federica Blando, Michael Kontominas, Anastasia Badeka

Abstract:

The aim of the present study was to differentiate yellow prickly pear according to geographical origin based on the combination of mineral content, physicochemical parameters, vitamins and antioxidants. A total of 240 yellow prickly pear samples from Cyprus, Spain, Italy and Greece were analyzed for pH, titratable acidity, electrical conductivity, protein, moisture, ash, fat, antioxidant activity, individual antioxidants, sugars and vitamins by UPLC-MS/MS as well as minerals by ICP-MS. Statistical treatment of the data included multivariate analysis of variance followed by linear discriminant analysis. Based on results, a correct classification of 66.7% was achieved using the cross validation by mineral content while 86.1% was achieved using the cross validation method by combination of all analytical parameters.

Keywords: geographical differentiation, prickly pear, chemometrics, analytical techniques

Procedia PDF Downloads 135
640 Incineration of Sludge in a Fluidized-Bed Combustor

Authors: Chien-Song Chyang, Yu-Chi Wang

Abstract:

For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in a pilot-scale vortexing fluidized bed. The moisture content of the sludge was 48.53%, and its LHV was 454.6 kcal/kg. Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min, respectively. Diesel burners with on-off controllers were used to control the temperature; the bed temperature was set to 750±20 °C, and the freeboard temperature was 850±20 °C. The experimental data show that the NO emission increased with bed temperature. The maximum NO emission is 139 ppm, which is in agreement with the regulation. The CO emission is low than 100 ppm through the operation period. The mean particle size of fly ash collected from baghouse decreased with operating time. The ration of bottom ash to fly ash is about 3. Compared with bottom ash, the potassium in the fly ash is much higher. It implied that the potassium content is not the key factor for aggregation of bottom ash.

Keywords: bottom ash, fluidized-bed combustion, incineration, sludge

Procedia PDF Downloads 266
639 Proteolysis in Serbian Traditional Dry Fermented Sausage Petrovská Klobása as Influenced by Different Ripening Processes

Authors: P. M. Ikonić, T. A. Tasić, L. S. Petrović, S. B. Škaljac, M. R. Jokanović, V. M. Tomović, B. V. Šojić, N. R. Džinić, A. M. Torbica, B. B. Ikonić

Abstract:

The aim of the study was to determine how different ripening processes (traditional vs. industrial) influenced the proteolysis in traditional Serbian dry-fermented sausage Petrovská klobása. The obtained results indicated more intensive pH decline (0.7 units after 9 days) in industrially ripened products (I), what had a positive impact on drying process and proteolytic changes in these samples. Thus, moisture content in I sausages was lower at each sampling time, amounting 24.7% at the end of production period (90 days). Likewise, the process of proteolysis was more pronounced in I samples, resulting in higher contents of non-protein nitrogen (NPN) and free amino acids nitrogen (FAAN), as well as in faster and more intensive degradation of myosin (≈220 kDa), actin (≈45 kDa) and other polypeptides during processing. Consequently, the appearance and accumulation of several protein fragments were registered.

Keywords: dry-fermented sausage, Petrovská klobása, proteolysis, ripening process

Procedia PDF Downloads 325
638 Direct Contact Ultrasound Assisted Drying of Mango Slices

Authors: E. K. Mendez, N. A. Salazar, C. E. Orrego

Abstract:

There is undoubted proof that increasing the intake of fruit lessens the risk of hypertension, coronary heart disease, stroke, and probable evidence that lowers the risk of cancer. Proper fruit drying is an excellent alternative to make their shelf-life longer, commercialization easier, and ready-to-eat healthy products or ingredients. The conventional way of drying is by hot air forced convection. However, this process step often requires a very long residence time; furthermore, it is highly energy consuming and detrimental to the product quality. Nowadays, power ultrasound (US) technic has been considered as an emerging and promising technology for industrial food processing. Most of published works dealing with drying food assisted by US have studied the effect of ultrasonic pre-treatment prior to air-drying on food and the airborne US conditions during dehydration. In this work a new approach was tested taking in to account drying time and two quality parameters of mango slices dehydrated by convection assisted by 20 KHz power US applied directly using a holed plate as product support and sound transmitting surface. During the drying of mango (Mangifera indica L.) slices (ca. 6.5 g, 0.006 m height and 0.040 m diameter), their weight was recorded every hour until final moisture content (10.0±1.0 % wet basis) was reached. After previous tests, optimization of three drying parameters - frequencies (2, 5 and 8 minutes each half-hour), air temperature (50-55-60⁰C) and power (45-70-95W)- was attempted by using a Box–Behnken design under the response surface methodology for the optimal drying time, color parameters and rehydration rate of dried samples. Assays involved 17 experiments, including a quintuplicate of the central point. Dried samples with and without US application were packed in individual high barrier plastic bags under vacuum, and then stored in the dark at 8⁰C until their analysis. All drying assays and sample analysis were performed in triplicate. US drying experimental data were fitted with nine models, among which the Verna model resulted in the best fit with R2 > 0.9999 and reduced χ2 ≤ 0.000001. Significant reductions in drying time were observed for the assays that used lower frequency and high US power. At 55⁰C, 95 watts and 2 min/30 min of sonication, 10% moisture content was reached in 211 min, as compared with 320 min for the same test without the use of US (blank). Rehydration rates (RR), defined as the ratio of rehydrated sample weight to that of dry sample and measured, was also larger than those of blanks and, in general, the higher the US power, the greater the RR. The direct contact and intermittent US treatment of mango slices used in this work improve drying rates and dried fruit rehydration ability. This technique can thus be used to reduce energy processing costs and the greenhouse gas emissions of fruit dehydration.

Keywords: ultrasonic assisted drying, fruit drying, mango slices, contact ultrasonic drying

Procedia PDF Downloads 340
637 Recurring as a Means of Partial Strength Recovery of Concrete Subjected to Elevated Temperatures

Authors: Shree Laxmi Prashant, Subhash C. Yaragal, K. S. Babu Narayan

Abstract:

Concrete is found to undergo degradation when subjected to elevated temperatures and loose substantial amount of its strength. The loss of strength in concrete is mainly attributed to decomposition of C-S-H and release of physically and chemically bound water, which begins when the exposure temperature exceeds 100°C. When such a concrete comes in contact with moisture, the cement paste is found rehydrate and considerable amount of strength lost is found to recover. This paper presents results of an experimental program carried out to investigate the effect of recuring on strength gain of OPC concrete specimens subjected to elevated temperatures from 200°C to 800°C, which were subjected to retention time of two hours and four hours at the designated temperature. Strength recoveries for concrete subjected to 7 designated elevated temperatures are compared. It is found that the efficacy of recuring as a measure of strength recovery reduces with increase in exposure temperature.

Keywords: elevated temperature, recuring, strength recovery, compressive strength

Procedia PDF Downloads 588
636 Recycling of Tea: A Prepared Lithium Anode Material Research

Authors: Yea-Chyi Lin, Shinn-Dar Wu, Chien-Ping Chung

Abstract:

Tea is not only part of the daily lives of the Chinese people, but also represents an essence of their culture. A manufactured tea is prepared with other complicated steps for self-cultivation. Tea drinking promotes friendship and is etiquette in Chinese ceremony. Tea was discovered in China and introduced worldwide. Tea is generally used as herbal medicine. Paowan of tea can be used as plant composts and deodorant as well as for moisture proof-package. Tea prepared via carbon material technology resulted in the increase of its value. Carbon material technology uses graphite. With the battery anode material, tea can also become a new carbon material element. It has a fiber carbon structure that can retain the advantage of tea ontology. Therefore, this study provides a new preparation method through special sintering technology equipment with a gas counter-current system of 300°C to 400°C and 400°C to 900°C. The recovery of carbonization was up to 80% or more. This study addresses tea recycling technology and shows charred sintering method and loss from solving grinder to obtain a good fiber carbon structure.

Keywords: recycling technology, tea, carbonization, sintering technology, manufacturing

Procedia PDF Downloads 428
635 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: seepage, soil, velocity, water

Procedia PDF Downloads 457
634 Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices

Authors: Austin Ikechukwu Gbasouzor, Sam Nna Omenyi, Sabuj Malli

Abstract:

This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted.

Keywords: activation energy, diffusion coefficients, drying model, drying time, ginger rhizomes, moisture ratio, thin layer

Procedia PDF Downloads 160
633 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 135
632 Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures

Authors: Pavel Boška, Jan Bomba, Tomáš Beránek, Jiří Procházka

Abstract:

When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures.

Keywords: adhesives, bond strength, low temperatures, polyvinyl acetate

Procedia PDF Downloads 346
631 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 470
630 Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water

Authors: Yufan Mu

Abstract:

High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.

Keywords: copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water

Procedia PDF Downloads 68