Search results for: hygroscopic polymers
124 Biofungicides in Nursery Production
Authors: Miroslava Markovic, Snezana Rajkovic, Ljubinko Rakonjac, Aleksandar Lucic
Abstract:
Oak powdery mildew is a serious problem on seedlings in nurseries as well as on naturally and artificially introduced progeny. The experiments were set on oak seedlings in two nurseries located in Central Serbia, where control of oak powdery mildew Microsphaera alphitoides Griff. et Maubl. had been conducted through alternative protection measures by means of various dosages of AQ-10 biofungicide, with and without added polymer (which has so far never been used in this country for control of oak powdery mildew). Simultaneous testing was conducted on the efficiency of a chemical sulphur-based preparation (used in this area for many years as a measure of suppression of powdery mildews, without the possibility of developing resistance of the pathogen to the active matter). To date, the Republic of Serbia has registered no fungicides for suppression of pathogens in the forest ecosystems. In order to introduce proper use of new disease-fighting agents into a country, certain relevant principles, requirements and criteria prescribed by the Forest Stewardship Council (FSC) must be observed, primarily with respect to measures of assessment and mitigation of risks, the list of dangerous and highly dangerous pesticides with the possibility of alternative protection. One of the main goals of the research was adjustment of the protective measures to the FSC policy through selection of eco-toxicologically favourable fungicides, given the fact that only preparations named on the list of permitted active matters are approved for use in certified forests. The results of the research have demonstrated that AQ-10 biofungicide can be used as a part of integrated disease management programmes as an alternative, through application of several treatments during vegetation and combination with other active matters registered for these purposes, so as to curtail the use of standard fungicides for control of powdery mildews on oak seedlings in nurseries. The best results in suppression of oak powdery mildew were attained through use of AQ-10 biofungicide (dose 50 or 70g/ha) with added polymer Nu Film-17 (dose 1.0 or 1.5 l/ha). If the treatment is applied at the appropriate time, even fewer number of treatments and smaller doses will be just as efficient.Keywords: oak powdery mildew, biofungicides, polymers, Microsphaera alphitoides
Procedia PDF Downloads 375123 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater
Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif
Abstract:
Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.
Procedia PDF Downloads 90122 Evidence of Microplastics Ingestion in Two Commercial Cephalopod Species: Octopus Vulgaris and Sepia Officinalis
Authors: Federica Laface, Cristina Pedà, Francesco Longo, Francesca de Domenico, Riccardo Minichino, Pierpaolo Consoli, Pietro Battaglia, Silvestro Greco, Teresa Romeo
Abstract:
Plastics pollution represents one of the most important threats to marine biodiversity. In the last decades, different species are investigated to evaluate the extent of the plastic ingestion phenomenon. Even if the cephalopods play an important role in the food chain, they are still poorly studied. The aim of this research was to investigate the plastic ingestion in two commercial cephalopod species from the southern Tyrrhenian Sea: the common octopus, Octopus vulgaris (n=6; mean mantle length ML 10.7 ± 1.8) and the common cuttlefish, Sepia officinalis (n=13; mean ML 13.2 ± 1.7). Plastics were extracted from the filters obtained by the chemical digestion of cephalopods gastrointestinal tracts (GITs), using 10% potassium hydroxide (KOH) solution in a 1:5 (w/v) ratio. Once isolated, particles were photographed, measured, and their size class, shape and color were recorded. A total of 81 items was isolated from 16 of the 19 examined GITs, representing a total occurrence (%O) of 84.2% with a mean value of 4.3 ± 8.6 particles per individual. In particular, 62 plastics were found in 6 specimens of O. vulgaris (%O=100) and 19 particles in 10 S. officinalis (%O=94.7). In both species, the microplastics size class was the most abundant (93.8%). Plastic items found in O. vulgaris were mainly fibers (61%) while fragments were the most frequent in S. officinalis (53%). Transparent was the most common color in both species. The analysis will be completed by Fourier transform infrared (FT-IR) spectroscopy technique in order to identify polymers nature. This study reports preliminary data on plastic ingestion events in two cephalopods species and represents the first record of plastic ingestion by the common octopus. Microplastic items detected in both common octopus and common cuttlefish could derive from secondary and/or accidental ingestion events, probably due to their behavior, feeding habits and anatomical features. Further studies will be required to assess the effect of marine litter pollution in these ecologically and commercially important species.Keywords: cephalopods, GIT analysis, marine pollution, Mediterranean sea, microplastics
Procedia PDF Downloads 255121 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect
Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich
Abstract:
Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking
Procedia PDF Downloads 116120 Fabrication of Electrospun Microbial Siderophore-Based Nanofibers: A Wound Dressing Material to Inhibit the Wound Biofilm Formation
Authors: Sita Lakshmi Thyagarajan
Abstract:
Nanofibers will leave no field untouched by its scientific innovations; the medical field is no exception. Electrospinning has proven to be an excellent method for the synthesis of nanofibers which, have attracted the interest for many biomedical applications. The formation of biofilms in wounds often leads to chronic infections that are difficult to treat with antibiotics. In order to minimize the biofilms and enhance the wound healing, preparation of potential nanofibers was focused. In this study, siderophore incorporated nanofibers were electrospun using biocompatible polymers onto the collagen scaffold and were fabricated into a biomaterial suitable for the inhibition of biofilm formation. The purified microbial siderophore was blended with Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO in a suitable solvent. Fabrication of siderophore blended nanofibers onto the collagen surface was done using standard protocols. The fabricated scaffold was subjected to physical-chemical characterization. The results indicated that the fabrication processing parameters of nanofiberous scaffold was found to possess the characteristics expected of the potential scaffold with nanoscale morphology and microscale arrangement. The influence of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO solution concentration, applied voltage, tip-to-collector distance, feeding rate, and collector speed were studied. The optimal parameters such as the ratio of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO concentration, applied voltage, tip-to-collector distance, feeding rate, collector speed were finalized based on the trial and error experiments. The fibers were found to have a uniform diameter with an aligned morphology. The overall study suggests that the prepared siderophore entrapped nanofibers could be used as a potent tool for wound dressing material for inhibition of biofilm formation.Keywords: biofilms, electrospinning, nano-fibers, siderophore, tissue engineering scaffold
Procedia PDF Downloads 123119 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products
Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis
Abstract:
Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue
Procedia PDF Downloads 407118 Preparation and Properties of Polylactic Acid/MDI Modified Thermoplastic Starch Blends
Authors: Sukhila Krishnan, Smita Mohanty, Sanjay K. Nayak
Abstract:
Polylactide (PLA) and thermoplastic starch (TPS) are the most promising bio-based materials presently available on the market. Polylactic acid is one of the versatile biodegradable polyester showing wide range of applications in various fields and starch is a biopolymer which is renewable, cheap as well as extensively available. The usual increase in the cost of petroleum-based commodities in the next decades opens bright future for these materials. Their biodegradability and compostability was an added advantage in applications that are difficult to recycle. Currently, thermoplastic starch (TPS) has been used as a substitute for synthetic plastic in several commercial products. But, TPS shows some limitations mainly due to its brittle and hydrophilic nature, which has to be resolved to widen its application.The objective of the work we report here was to initiate chemical modifications on TPS and to build up a process to control its chemical structure using a solution process which can reduce its water sensitive properties and then blended it with PLA to improve compatibility between PLA and TPS. The method involves in cleavage of starch amylose and amylopectin chain backbone to plasticize with glycerol and water in batch mixer and then the prepared TPS was reacted in solution with diisocyanates i.e, 4,4'-Methylenediphenyl Diisocyanate (MDI).This diisocyanate was used before with great success for the chemical modification of TPS surface. The method utilized here will form an urethane-linkages between reactive isocyanate groups (–NCO) and hydroxyl groups (-OH) of starch as well as of glycerol. New polymer synthesised shows a reduced crystallinity, less hydrophilic and enhanced compatibility with other polymers. The TPS was prepared by Haake Rheomix 600 batch mixer with roller rotors operating at 50 rpm. The produced material is then refluxed for 5hrs with MDI in toluene with constant stirring. Finally, the modified TPS was melt blended with PLA in different compositions. Blends obtained shows an improved mechanical properties. These materials produced are characterized by Fourier Transform Infrared Spectra (FTIR), DSC, X-Ray diffraction and mechanical tests.Keywords: polylactic acid, thermoplastic starch, Methylenediphenyl Diisocyanate, Polylactide (PLA)
Procedia PDF Downloads 384117 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol
Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine
Abstract:
Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.Keywords: biopolymres, drug delivery, hydrogels, tramadol
Procedia PDF Downloads 358116 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent
Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja
Abstract:
This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater
Procedia PDF Downloads 124115 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry
Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu
Abstract:
The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS
Procedia PDF Downloads 281114 Sonocatalytic Treatment of Baker’s Yeast Wastewater by Using SnO2/TiO2 Composite
Authors: Didem Ildırar, Serap Fındık
Abstract:
Baker’s yeast industry uses molasses as a raw material. Molasses wastewater contains high molecular weight polymers called melanoidins. Melanoidins are obtained after the reactions between the amino acids and carbonyl groups in molasses. The molasses wastewater has high biochemical and chemical oxygen demand and dark brown color. If it is discharged to receiving bodies without any treatment, it prevents light penetration and dissolved oxygen level of the surface water decreases. Melanoidin compounds are toxic effect to the microorganism in water and there is a resistance to microbial degradation. Before discharging molasses wastewater, adequate treatment is necessary. In addition to changing environmental regulations, properties of treated wastewater must be improved. Advanced oxidation processes can be used to improve existing properties of wastewater. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs the use of ultrasound resulting in cavitation phenomena. In this study, decolorization and chemical oxygen demand removal (COD) of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator was used for this study. Its operating frequency is 20kHz. SnO2/TiO2 catalyst has been used as sonocatalyst. The effects of the composite preparation method, mixing time while composite prepared, the molar ratio of SnO2/TiO2, the calcination temperature, and time, the catalyst amount were investigated on the treatment of baker’s yeast effluent. . According to the results, the prepared composite SnO2/TiO2 by using ultrasonic probe gave a better result than prepared composite by using an ultrasonic bath. Prepared composite by using an ultrasonic probe with a 4:1 molar ratio treated at 800°C for 60min gave a better result. By using this composite, optimum catalyst amount was 0.2g/l. At these conditions 26.6% decolorization was obtained. There was no COD removal at the studied conditions.Keywords: baker’s yeast effluent, COD, decolorization, sonocatalyst, ultrasonic irradiation
Procedia PDF Downloads 322113 Hybrid Nanostructures of Acrylonitrile Copolymers
Authors: A. Sezai Sarac
Abstract:
Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures
Procedia PDF Downloads 383112 Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles
Authors: Sungmin Park, Gyungmok Nam, Seungpyo Woo, Young Choi, Sangheon Park, Sang-Hee Yoon
Abstract:
Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market.Keywords: R³ UV exposure, optical model, UV dose, reflection, solvent concentration, biodegradable polymer microneedle
Procedia PDF Downloads 167111 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene
Authors: Mohamad Mohsen Yavarizadeh
Abstract:
Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.Keywords: molecular weight distribution, polystyrene, toughness, homopolymer
Procedia PDF Downloads 442110 Synthesis and Characterization of Polycaprolactone for the Delivery of Rifampicin
Authors: Evelyn Osehontue Uroro, Richard Bright, Jing Yang Quek, Krasimir Vasilev
Abstract:
Bacterial infections have been a challenge both in the public and private sectors. The colonization of bacteria often occurs in medical devices such as catheters, heart valves, respirators, and orthopaedic implants. When biomedical devices are inserted into patients, the deposition of macromolecules such as fibrinogen and immunoglobin on their surfaces makes it easier for them to be prone to bacteria colonization leading to the formation of biofilms. The formation of biofilms on medical devices has led to a series of device-related infections which are usually difficult to eradicate and sometimes cause the death of patients. These infections require surgical replacements along with prolonged antibiotic therapy, which would incur additional health costs. It is, therefore, necessary to prevent device-related infections by inhibiting the formation of biofilms using intelligent technology. Antibiotic resistance of bacteria is also a major threat due to overuse. Different antimicrobial agents have been applied to microbial infections. They include conventional antibiotics like rifampicin. The use of conventional antibiotics like rifampicin has raised concerns as some have been found to have hepatic and nephrotoxic effects due to overuse. Hence, there is also a need for proper delivery of these antibiotics. Different techniques have been developed to encapsulate and slowly release antimicrobial agents, thus reducing host cytotoxicity. Examples of delivery systems are solid lipid nanoparticles, hydrogels, micelles, and polymeric nanoparticles. The different ways by which drugs are released from polymeric nanoparticles include diffusion-based release, elution-based release, and chemical/stimuli-responsive release. Polymeric nanoparticles have gained a lot of research interest as they are basically made from biodegradable polymers. An example of such a biodegradable polymer is polycaprolactone (PCL). PCL degrades slowly by hydrolysis but is often sensitive and responsive to stimuli like enzymes to release encapsulants for antimicrobial therapy. This study presents the synthesis of PCL nanoparticles loaded with rifampicin and the on-demand release of rifampicin for treating staphylococcus aureus infections.Keywords: enzyme, Staphylococcus aureus, PCL, rifampicin
Procedia PDF Downloads 126109 Chemical Aging of High-Density Polyethylene (HDPE-100) in Interaction with Aggressive Environment
Authors: Berkas Khaoula, Chaoui Kamel
Abstract:
Polyethylene (PE) pipes are one of the best options for water and gas transmission networks. The main reason for such a choice is its high-quality performance in service conditions over long periods of time. PE pipes are installed in contact with different soils having various chemical compositions with confirmed aggressiveness. As a result, PE pipe surfaces undergo unwanted oxidation reactions. Usually, the polymer mixture is designed to include some additives, such as anti-oxidants, to inhibit or reduce the degradation effects. Some other additives are intended to increase resistance to the ESC phenomenon associated with polymers (ESC: Environmental Stress Cracking). This situation occurs in contact with aggressive external environments following different contaminations of soil, groundwater and transported fluids. In addition, bacterial activity and other physical or chemical media, such as temperature and humidity, can play an enhancing role. These conditions contribute to modifying the PE pipe structure and degrade its properties during exposure. In this work, the effect of distilled water, sodium hypochlorite (bleach), diluted sulfuric acid (H2SO4) and toluene-methanol (TM) mixture are studied when extruded PE samples are exposed to those environments for given periods. The chosen exposure periods are 7, 14 and 28 days at room temperature and in sealed glass containers. Post-exposure observations and ISO impact tests are presented as a function of time and chemical medium. Water effects are observed to be limited in explaining such use in real applications, whereas the changes in TM and acidic media are very significant. For the TM medium, the polymer toughness increased drastically (from 15.95 kJ/m² up to 32.01 kJ/m²), while sulfuric acid showed a steady augmentation over time. This situation may correspond to a hardening phenomenon of PE increasing its brittleness and its ability for structural degradation because of localized oxidation reactions and changes in crystallinity.Keywords: polyethylene, toluene-methanol mixture, environmental stress cracking, degradation, impact resistance
Procedia PDF Downloads 75108 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad
Abstract:
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly
Procedia PDF Downloads 76107 The Harmonious Blend of Digitalization and 3D Printing: Advancing Aerospace Jet Pump Development
Authors: Subrata Sarkar
Abstract:
The aerospace industry is experiencing a profound product development transformation driven by the powerful integration of digitalization and 3D printing technologies. This paper delves into the significant impact of this convergence on aerospace innovation, specifically focusing on developing jet pumps for fuel systems. This case study is a compelling example of the immense potential of these technologies. In response to the industry's increasing demand for lighter, more efficient, and customized components, the combined capabilities of digitalization and 3D printing are reshaping how we envision, design, and manufacture critical aircraft parts, offering a distinct paradigm in aerospace engineering. Consider the development of a jet pump for a fuel system, a task that presents unique and complex challenges. Despite its seemingly simple design, the jet pump's development is hindered by many demanding operating conditions. The qualification process for these pumps involves many analyses and tests, leading to substantial delays and increased costs in fuel system development. However, by harnessing the power of automated simulations and integrating legacy design, manufacturing, and test data through digitalization, we can optimize the jet pump's design and performance, thereby revolutionizing product development. Furthermore, 3D printing's ability to create intricate structures using various materials, from lightweight polymers to high-strength alloys, holds the promise of highly efficient and durable jet pumps. The combined impact of digitalization and 3D printing extends beyond design, as it also reduces material waste and advances sustainability goals, aligning with the industry's increasing commitment to environmental responsibility. In conclusion, the convergence of digitalization and 3D printing is not just a technological advancement but a gateway to a new era in aerospace product development, particularly in the design of jet pumps. This revolution promises to redefine how we create aerospace components, making them safer, more efficient, and environmentally responsible. As we stand at the forefront of this technological revolution, aerospace companies must embrace these technologies as a choice and a strategic imperative for those striving to lead in innovation and sustainability in the 21st century.Keywords: jet pump, digitalization, 3D printing, aircraft fuel system.
Procedia PDF Downloads 56106 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging
Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan
Abstract:
With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs
Procedia PDF Downloads 472105 Development and Characterization of Expandable TPEs Compounds for Footwear Applications
Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo
Abstract:
Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications
Procedia PDF Downloads 208104 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study
Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport
Procedia PDF Downloads 20103 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample
Authors: Kara J. Coffman-Rea, Karen E. Samonds
Abstract:
Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification
Procedia PDF Downloads 256102 Kinetic Study of Municipal Plastic Waste
Authors: Laura Salvia Diaz Silvarrey, Anh Phan
Abstract:
Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.Keywords: kinetic, municipal plastic waste, pyrolysis, random scission
Procedia PDF Downloads 354101 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 363100 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 11199 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 25798 Formulation and Evaluation of Curcumin-Zn (II) Microparticulate Drug Delivery System for Antimalarial Activity
Authors: M. R. Aher, R. B. Laware, G. S. Asane, B. S. Kuchekar
Abstract:
Objective: Studies have shown that a new combination therapy with Artemisinin derivatives and curcumin is unique, with potential advantages over known ACTs. In present study an attempt was made to prepare microparticulate drug delivery system of Curcumin-Zn complex and evaluate it in combination with artemether for antimalarial activity. Material and method: Curcumin Zn complex was prepared and encapsulated using sodium alginate. Microparticles thus obtained are further coated with various enteric polymers at different coating thickness to control the release. Microparticles are evaluated for encapsulation efficiency, drug loading and in vitro drug release. Roentgenographic Studies was conducted in rabbits with BaSO 4 tagged formulation. Optimized formulation was screened for antimalarial activity using P. berghei-infected mice survival test and % paracetemia inhibition, alone (three oral dose of 5mg/day) and in combination with arthemether (i.p. 500, 1000 and 1500µg). Curcumin-Zn(II) was estimated in serum after oral administration to rats by using spectroflurometry. Result: Microparticles coated with Cellulose acetate phthalate showed most satisfactory and controlled release with 479 min time for 60% drug release. X-ray images taken at different time intervals confirmed the retention of formulation in GI tract. Estimation of curcumin in serum by spectroflurometry showed that drug concentration is maintained in the blood for longer time with tmax of 6 hours. The survival time (40 days post treatment) of mice infected with P. berghei was compared to survival after treatment with either Curcumin-Zn(II) microparticles artemether combination, curcumin-Zn complex and artemether. Oral administration of Curcumin-Zn(II)-artemether prolonged the survival of P.berghei-infected mice. All the mice treated with Curcumin-Zn(II) microparticles (5mg/day) artemether (1000µg) survived for more than 40 days and recovered with no detectable parasitemia. Administration of Curcumin-Zn(II) artemether combination reduced the parasitemia in mice by more than 90% compared to that in control mice for the first 3 days after treatment. Conclusion: Antimalarial activity of the curcumin Zn-artemether combination was more pronounced than mono therapy. A single dose of 1000µg of artemether in curcumin-Zn combination gives complete protection in P. berghei-infected mice. This may reduce the chances of drug resistance in malaria management.Keywords: formulation, microparticulate drug delivery, antimalarial, pharmaceutics
Procedia PDF Downloads 39497 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear
Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro
Abstract:
Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity
Procedia PDF Downloads 13696 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential
Authors: Viktor Kochkodan
Abstract:
The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification
Procedia PDF Downloads 25195 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull
Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones
Abstract:
To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing
Procedia PDF Downloads 140