Search results for: high-albedo materials
6300 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 1196299 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging
Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis
Abstract:
Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).Keywords: calcification materials, CNR, dual energy, X-rays
Procedia PDF Downloads 3576298 Efforts to Revitalize Piipaash Language: An Explorative Study to Develop Culturally Appropriate and Contextually Relevant Teaching Materials for Preschoolers
Authors: Shahzadi Laibah Burq, Gina Scarpete Walters
Abstract:
Piipaash, representing one large family of North American languages, Yuman, is reported as one of the seriously endangered languages in the Salt River Pima-Maricopa Indian Community of Arizona. In a collaborative venture between Arizona State University (ASU) and Salt River Pima-Maricopa Indian Community (SRPMIC), efforts have been made to revitalize and preserve the Piipaash language and its cultural heritage. The present study is one example of several other language documentation and revitalization initiatives that Humanities Lab ASU has taken. This study was approved to receive a “Beyond the lab” grant after the researchers successfully created a Teaching Guide for Early Childhood Piipaash storybook during their time working in the Humanities Lab. The current research is an extension of the previous project and focuses on creating customized teaching materials and tools for the teachers and parents of the students of the Early Enrichment Program at SRPMIC. However, to determine and maximize the usefulness of the teaching materials with regards to their reliability, validity, and practicality in the given context, this research aims to conduct Environmental Analysis and Need Analysis. Environmental Analysis seeks to evaluate the Early Enrichment Program situation and Need Analysis to investigate the specific and situated requirements of the teachers to assist students in building target language skills. The study employs a qualitative methods approach for the collection of the data. Multiple data collection strategies are used concurrently to gather information from the participants. The research tools include semi-structured interviews with the program administrators and teachers, classroom observations, and teacher shadowing. The researchers utilize triangulation of the data to maintain validity in the process of data interpretation. The preliminary results of the study show a need for culturally appropriate materials that can further the learning of students of the target language as well as the culture, i.e., clay pots and basket-making materials. It was found that the course and teachers focus on developing the Listening and Speaking skills of the students. Moreover, to assist the young learners beyond the classroom, the teachers could make use of send-home teaching materials to reinforce the learning (i.e., coloring books, including illustrations of culturally relevant animals, food, and places). Audio language resources are also identified as helpful additional materials for the parents to assist the learning of the kids.Keywords: indigenous education, materials development, need analysis, piipaash language revitalizaton
Procedia PDF Downloads 896297 Design and Development of Herbal Formulations: Challenges and Solutions
Authors: B. Sathyanarayana
Abstract:
As per the report of World Health Organization, more than 80% of world population uses medicines made from herbal and natural materials. They have stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. Quality assurance and control measures, such as national quality specification and standards for herbal materials, good manufacturing practices (GMP) for herbal medicines, labelling, and licensing schemes for manufacturing, imports and marketing, should be in place in every country where herbal medicines are regulated. These measures are vital for ensuring the safety and efficacy of herbal medicines. In the case of herbal products challenge begins at the stage of designing itself except the classical products. Selection of herbal ingredients, officinal parts to be used, proportions are vital. Once the formulation is designed one should take utmost care to produce the standardized product of assured quality and safety. Quality control measures should cover the validation of quality and identity of raw materials, in process control (as per SOP and GMP norms) and at the level of final product. Quality testing, safety and efficacy studies of the final product are required to ensure the safe and effective use of the herbal products in human beings. Medicinal plants being the materials of natural resource are subjected to great variation making it really difficult to fix quality standards especially in the case of polyherbal preparations. Manufacturing also needs modification according to the type of ingredients present. Hence, it becomes essential to develop Standard operative Procedure for a specific herbal product. Present paper throws a light on the challenges that are encountered during the design and development of herbal products.Keywords: herbal product, challenges, quality, safety, efficacy
Procedia PDF Downloads 5026296 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite
Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao
Abstract:
Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition
Procedia PDF Downloads 776295 Cleaner Production Framework for an Beverage Manufacturing Company
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study explores to improve the resource efficiency, waste water reduction and to reduce losses of raw materials in a beverage making industry. A number of cleaner production technologies were put across in this work. It was also noted that cleaner production technology practices are not only desirable from the environmental point of view, but they also make good economic sense, in their contribution to the bottom line by conserving resources like energy, raw materials and manpower, improving yield as well as reducing treatment/disposal costs. This work is a resource in promoting adoption and implementation of CP in other industries for sustainable development.Keywords: resource efficiency, beverages, reduce losses, cleaner production, energy, yield
Procedia PDF Downloads 4166294 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy
Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu
Abstract:
The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.Keywords: composites, graphene, hydrothermal, renewable energy
Procedia PDF Downloads 4986293 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature
Authors: Mohannad N. H. Al-Malichi
Abstract:
Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets
Procedia PDF Downloads 1206292 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids
Authors: Rasike De Silva, Xungai Wang, Nolene Byrne
Abstract:
We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.Keywords: textile materials, bio polymers, ionic liquids, duck feather
Procedia PDF Downloads 4796291 Magnetic Lines of Force and Diamagnetism
Authors: Angel Pérez Sánchez
Abstract:
Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines
Procedia PDF Downloads 886290 Plant Extracts: Chemical Analysis, Investigation of Antioxidant, Antibacterial, and Antifungal Activities and Their Applications in Food Packaging Materials
Authors: Mohammed Sabbah, Asmaa Al-Asmar, Doaa Abu-Hani, Fuad Al-Rimawi
Abstract:
Plant extracts are an increasingly popular natural product with a wide range of potential applications in food, industrial, and health care industries. They are rich in polyphenolic compounds and flavonoids, which have been demonstrated to possess a variety of beneficial properties, including antimicrobial and antioxidant activity. Plant extracts have been found to possess antimicrobial activity against a variety of foodborne pathogens and can be used as a natural preservative to extend the shelf life of food products. They have also strong antioxidant activity, which can reduce the formation of free radicals and oxidation of food components. Recently there is an increase interest in bio-based polymers to be used as innovative “bioplastics” for industrial exploitation e.g. packaging materials for food products. Additionally, incorporation of active compounds (e.g. antioxidants and antimicrobials) in bio-polymer materials is of particular interest since such active polymers can be used as active packaging materials (with antimicrobial and antioxidant activity). In this work, different plant extracts have been characterized for their phenolic compounds, flavonoids content, antioxidant activity (both as free radical scavenging ability and reducing ability), and antimicrobial activity against gram positive and negative bacteria (Escherichia coli; Staphylococcus aureus, and Pseudomonas aeruginosa) as well as antifungal activities (against yeast, mold and Botrytis cinera/a plant pathogen). Results showed that many extracts are rich with polyphenolic compounds and flavonoids and have strong antioxidant activities, and rich with phytochemicals (e.g. rutin, quercetin, oleuropein, tyrosol and hydroxytyrosol). Some extracts showed antibacterial activity against both gram positive and negative bacteria as well as antifungal activities and can work, therefore, as preservatives for food or pharmaceutical industries. As an application, two extracts were used as additive to pectin-based packaging film, and results showed that the addition of these extracts significantly improve their functionality as antimicrobial and antioxidant activity. These biomaterials, therefore can be used in food packaging materials to extend the shelf life of food products.Keywords: plant extracts, antioxidants, flavonoids, bioplastic, edible biofilm, packaging materials
Procedia PDF Downloads 786289 Evaluation of the Efficiency of Nanomaterials in the Consolidation of Limestone
Authors: Mohamed Saad Gad Elzoghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. It is exposed to different weathering processes that cause degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols, and nano-silica, i.e., dispersions of silica nanoparticles in water, promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass, and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes an evaluation of some nanomaterials in consolidation limestone stone in comparison with traditional consolidants. These consolidation materials are nano calcium hydroxide nanolime, and nanosilica. The latter is known commercially as Nano Estel and the former Known as Nanorestore compared to traditional consolidants Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidants by using followed methods, characterization of physical properties of stone, scanning electron microscopy (SEM), X-ray diffractometry, Fourier transforms infrared spectroscopy, and mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results could be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 816288 Design of an Acoustic System for Small-Scale Power Plants
Authors: Mohammadreza Judaki, Hosein Mohammadnezhad Shourkaei
Abstract:
Usually, noise generated by industrial units, is a pollution and disturbs people and causes problems for human health and sometimes these units will be closed because they cannot eliminate this pollution. Small-scale power plants usually are built close to residential areas, and noise generated by these power plants is an important factor in choosing their location and their design. Materials used to reduce noise are studied by measuring their absorption and reflection index numerically and experimentally. We can use MIKI model (Yasushi Miki, 1990) to simulate absorption index by using software like Ansys or Soundflow and compare calculation results with experimental simulation data. We consider high frequency sounds of power plant engines octave band diagram because dB value of high frequency noise is more noticeable for human ears. To prove this, in this study we first will study calculating octave band of engines exhausts and then we will study acoustic behavior of materials that we will use in high frequencies and this will give us our optimum noise reduction plan.Keywords: acoustic materials, eliminating engine noise, octave level diagram, power plant noise
Procedia PDF Downloads 1446287 Design for Sustainability as a Key Driver for Exploring the Potential of Cork Material
Authors: Spase Janevski
Abstract:
We, as designers, should be aware of the consequences of our material selection, at the early stages of the design process. Some of the designer’s decisions can have a very significant impact on design for sustainability. The influence of this concept has led to years of research studies into eco-friendly materials and their potentials for creating new sustainable products. In order to answer the question, 'how cork has become a design trend', this paper will present an overview of the implications of the concept of design for sustainability on the potential uses of cork material. A decade ago, cork as a material had an association with wine stoppers, but with the evolution of sustainable product design as part of the concept of design for sustainability, cork now offers product designers a wide range of new materials and applications. The purpose of this paper is to show how the phenomenon of sustainability has had an impact on the progress of the material which is currently not being an integral component of the design material palette. At the beginning, the nature of the relationship between cork and sustainability will be explained through the following stages: 1) fundamental understanding of the concept of Design for Sustainability and the importance of material selection for sustainable product design, and 2) the importance of cork oak trees for the environment and the environmental impacts of cork products. In order to examine and present the influence of the sustainability on the innovation in cork applications, the paper will provide a historical overview of designing with cork. The overview will consist of four stages: 1) pre-industrial period - the period when ancient nations used cork and amphoras to store their wine; 2) industrial period - emergence and industrialization of well-known wine stoppers; 3) post-industrial period - commercializing cork products in the area of floors and coverings and first developments in industrial research; and 4) the period when large cork realized the importance of sustainability and started to focus more markedly on research and development. The existence of new cork materials, the investigation in new applications and the investment in new innovations have proved that the sustainability approach has had a great influence on the revival of this material. In addition, the paper will present some of the new cork innovative materials and applications and their potentials for designing promising and sustainable solutions with additive manufacturing technologies, such as 3D printing. Lastly, the paper will introduce some questions for further study, such as the environmental impacts of the new hybrid materials and the gap between cork industry and cork research and development teams. The paper concludes by stating that cork is not only a material for wine stoppers anymore, thanks to the awareness of the concept of design for sustainability.Keywords: cork, design for sustainability, innovation, sustainable materials
Procedia PDF Downloads 1116286 Evaluation of Corrosion Behaviour of Coatings Applied in a High-Strength Low Alloy Steel in Different Climatic Cabinets
Authors: Raquel Bayon, Ainara Lopez-Ortega, Elena Rodriguez, Amaya Igartua
Abstract:
Corrosion is one of the most concerning phenomenon that accelerates material degradation in offshore applications. In order to avoid the premature failure of metallic materials in marine environments, organic coatings have widely been used, due to their elevated corrosion resistance. Thermally-sprayed metals have recently been used in offshore applications, whereas ceramic materials are usually less employed, due to their high cost. The protectiveness of the coatings can be evaluated and categorized in corrosivity categories in accordance with the ISO 12944-6 Standard. According to this standard, for coatings that are supposed to work in marine environments, a C5-M category is required for components working out of the water or partially immersed in the splash zone, and an Im2 category for totally immersed components. C5-M/Im-2 high category would correspond to a durability of more than 20 years without maintenance in accordance with ISO 12944 and NORSOK M501 standards. In this work, the corrosion behavior of three potential coatings used in offshore applications has been evaluated. For this aim, the materials have been subjected to different environmental conditions in several climatic chambers (humidostatic, climatic, immersion, UV and salt-fog). The category of the coatings to each condition has been selected, in accordance with the previously mentioned standard.Keywords: cabinet, coatings, corrosion, offshore
Procedia PDF Downloads 4206285 A New Binder Mineral for Cement Stabilized Road Pavements Soils
Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner
Abstract:
Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.Keywords: soil, stabilization, cement, binder, Novocrete, additive
Procedia PDF Downloads 2216284 Experimental Investigation on Utility and Suitability of Lateritic Soil as a Pavement Material
Authors: J. Hemanth, B. G. Shivaprakash, S. V. Dinesh
Abstract:
The locally available Lateritic soil in Dakshina Kanadda and Udupi districts are traditionally being used as building blocks for construction purpose but they do not meet the conventional requirements (L L ≤ 25% & P I ≤6%) and desired four days soaked CBR value to be used as a sub-base course material in pavements. In order to improve its properties to satisfy the Atterberg’s Limits, the soil is blended with sand, cement and quarry dust at various percentages and also to meet the CBR strength requirements, individual and combined gradation of various sized aggregates along with Laterite soil and other filler materials has been done for coarse graded granular sub-base materials (Grading II and Grading III). The effect of additives blended with lateritic soil and aggregates are studied in terms of Atterberg’s limits, compaction, California Bearing Ratio (CBR), and permeability. It has been observed that the addition of sand, cement and quarry dust are found to be effective in improving Atterberg’s limits, CBR values, and permeability values. The obtained CBR and permeability values of Grading III, and Grading II materials found to be sufficient to be used as sub-base course for low volume roads and high volume roads respectively.Keywords: lateritic soil, sand, quarry dust, gradation, sub-base course, permeability
Procedia PDF Downloads 3186283 Acid-Responsive Polymer Conjugates as a New Generation of Corrosion Protecting Materials
Authors: Naruphorn Dararatana, Farzad Seidi, Daniel Crespy
Abstract:
Protection of metals is a critical issue in industry. The annual cost of corrosion in the world is estimated to be about 2.5 trillion dollars and continuously increases. Therefore, there is a need for developing novel protection approaches to improve corrosion protection. We designed and synthesized smart polymer/corrosion inhibitor conjugates as new generations of corrosion protecting materials. Firstly, a polymerizable acrylate derivative of 8-hydroxyquinoline (8HQ), an effective corrosion inhibitor, containing acid-labile β-thiopropionate linkage was prepared in three steps. Then, it was copolymerized with ethyl acrylate in the presence of 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) by radical polymerization. Nanoparticles with an average diameter of 140 nm were prepared from the polymer conjugate by the miniemulsion-solvent evaporation process. The release behavior of 8HQ from the the nanoparticles was studied in acidic (pH 3.5) and neutral media (pH 7.0). The release profile showed a faster release of 8HQ in acidic medium in comparison with neutral medium. Indeed 100% of 8HQ was released after 14 days in acidic medium whereas only around 15% of 8HQ was released during the same period at neutral pH. Therefore, the polymer conjugate nanoparticles are suitable materials as additives or to form coatings on metal substrates for corrosion protection.Keywords: Corrosion inhibitor, 8-Hydroxyquinoline, Polymer conjugated, β-Thiopropionate
Procedia PDF Downloads 1936282 Corrosion and Tribocorrosion Behaviour of Potential Coatings Applied in High-Strength Low-Alloy Steel for Offshore Applications
Authors: Ainara Lopez-Ortega, Raquel Bayon, Elena Rodriguez, Amaya Igartua
Abstract:
The materials used in offshore structural applications are continuously subjected to aggressive environmental conditions that accelerate their degradation, thus shortening their useful life. Wear, corrosion and the effect of marine microorganisms are the main processes taking place in marine environments, and whenever they occur simultaneously the durability of materials is strongly reduced. In the present work, the tribocorrosion behaviour of a High-Strength Low-Alloy (HSLA) steel and three coatings commonly used for protecting offshore components has been studied by means of unidirectional tribological tests in synthetic seawater. The coatings were found to enhance the tribological response of the uncoated steel and provide the system with improved corrosion resistance, in terms of smaller material losses and reduction of friction coefficients. The tests were repeated after ageing the materials in a salt-fog cabinet, and the aging process was found to slightly affect the performance of two of the coatings, in terms of higher material losses, meanwhile the third coating was not affected.Keywords: coatings, corrosion, high-strength low-alloy steel, seawater, tribocorrosion
Procedia PDF Downloads 4196281 Collagen Hydrogels Cross-Linked by Squaric Acid
Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska
Abstract:
Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.Keywords: collagen, squaric acid, cross-linking, hydrogel
Procedia PDF Downloads 3886280 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 136279 Study of Behavior Tribological Cutting Tools Based on Coating
Authors: A. Achour L. Chekour, A. Mekroud
Abstract:
Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.Keywords: friction, wear, tool, cutting
Procedia PDF Downloads 3316278 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network
Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed
Abstract:
Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.Keywords: modeling, truck rental, supply chains management.
Procedia PDF Downloads 2286277 Softening Finishing: Teaching and Learning Materials
Authors: C.W. Kan
Abstract:
Softening applied on textile products based on several reasons. First, the synthetic detergent removes natural oils and waxes, thus lose the softness. Second, compensate the harsh handle of resin finishing. Also, imitate natural fibres and improve the comfort of fabric are the reasons to apply softening. There are different types of softeners for softening finishing of textiles, nonionic softener, anionic softener, cationic softener and silicone softener. The aim of this study is to illustrate the proper application of different softeners and their final softening effect in textiles. The results could also provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, softening, textiles, effect
Procedia PDF Downloads 2176276 Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels
Authors: Vishal Puri, Pradipta Chakrabortty, Swapan Majumdar
Abstract:
Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls.Keywords: bamboo, prefabricated walls, reinforced structure, sustainable infrastructure
Procedia PDF Downloads 3116275 Study of Radioactivity of Oil and Gas
Authors: Harish Aryal, Thalia Balderas, Alondra Rodriguez
Abstract:
Radioactivity present in nature possess a major challenge to public health and occupational concerns. Even at low doses, NORM can cause radiation-induced cancers, heritable diseases, genetic defects, etc. There have not been enough radiological studies and consequently, there is a lack of supportive data. In addition, there is no universal medical surveillance program for low-level doses and there is a need for NORM management guidelines for appropriate control. Naturally Occurring Radioactive Material (NORM) is present everywhere during oil/gas exploration. Currently, there is limited data available to quantify radioactivity. This research presents the study of radioactivity in different areas in the United States to be encouraged to be used for further study in Texas or similar areas within the oil and gas industry. Many materials that are found in the oil and gas industry are NORM (Naturally Occurring Radioactive Materials). The NORM is made of various types of materials, including Radium 226, Radium 228, and Radon 222. Efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation in this area of study. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessments have been conducted. To further comprehend how to measure radioactivity in oil and gas, it will be essential to understand the amount and type of radioactivity that is wasted on the water and soil of the industry.Keywords: NORM, radium 226, radon 222, radionuclides, geological formations
Procedia PDF Downloads 886274 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests
Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda
Abstract:
One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling
Procedia PDF Downloads 2766273 The Potential Role of University Libraries in the Fight against Terrorism in Upper Egypt
Authors: Essam Mansour
Abstract:
The purpose of this study is to explore the potential role of South Valley University (SVU) libraries’ manpower, collections and services in the fight against terrorism in the Upper Egypt. A quantitative research methodology was used in the form of a survey sent to 127 library staff at the SVU. The survey was undertaken from June to July 2015 with a response rate 73.2%. Printed materials were the most adequate collections in the SVU libraries. Other materials, such as CDs/DVDs, audiovisual materials, microfilm and microfiche, online resources and electronic materials respectively were inadequate at SVU libraries. Few of the services provided by SVU libraries were characterized as adequate services, some are inadequate and other services do not exist. The average of the facilities provided by SVU libraries was somewhat adequate. Activities, such as holding social field trips, holding training workshops and holding academic field trip were, at least, somewhat adequate to SVU libraries. SVU libraries had no a significant role in fighting terrorism in the Upper Egypt. There is no a relationship between the SVU library staff’s professional characteristics and the potential role that their libraries may play in the fight against this phenomenon. As a result of the lack of SVU libraries’ collections, services, facilities and activities, this study concluded that that such role could not be achieved. Almost all the library staff admitted that this severe lack has affected the provision of library patrons and members of the library community to these collections and services, which help in countering the threat of terrorism. Despite the significance of all these problems faced by SVU libraries in the fight against terrorism, it was found that the inadequacy of the library opening hours is significantly correlated with the professional characteristics of the library staff, particularly their job title and work experience.Keywords: terrorism, national security, university libraries, south valley university, Egypt, survey
Procedia PDF Downloads 2506272 Advanced Energy Absorbers Used in Blast Resistant Systems
Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký
Abstract:
The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics
Procedia PDF Downloads 4586271 Effect of Li-excess on Electrochemical Performance of Ni-rich LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂ Cathode Materials for Li-ion Batteries
Authors: Eyob Belew Abebe
Abstract:
Nickel-rich layered oxide cathode materials having a Ni content of ≥ 90% have great potential for use in next-generation lithium-ion batteries (LIBs), due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of Li-excess on the precursors using a solid-state method to obtain sintered Li1+x(Ni0.9Co0.05Mn0.05)1–xO2 (denoted as L1+x-NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x-NCM cathode having a Li-excess of 4% exhibited a discharge capacity of ca. 216.17 mAh g–1 at 2.7–4.3 V, 0.1C and retained 95.7% of its initial discharge capacity (ca. 181.39 mAh g–1) after 100 cycles of 1C charge/discharge which is the best performance as compared with stoichiometric Li1+x(Ni0.9Co0.05Mn0.05)1-xO2 (i.e. x=0, Li:TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mAh g–1 at a rate of 10C, led to the 4% Li-excess optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in-situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li-excess in the Ni-rich NCM90 cathode material: (i). decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii). increased the crystallinity, and (iii). accelerated Li+ ion transport by widening the Li-slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li-excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li-excess are potential candidates for use in next-generation Li-ion batteries.Keywords: LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂, li-excess, cation mixing, structure change, cycle stability, electrochemical properties
Procedia PDF Downloads 175