Search results for: g-group profile analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28351

Search results for: g-group profile analysis

27781 Beneficial Effect of Chromium Supplementation on Glucose, HbA1C and Lipid Variables in Individuals with Newly Onset Type-2 Diabetes

Authors: Baljinder Singh, Navneet Sharma

Abstract:

Chromium is an essential nutrient involved in normal carbohydrate and lipid metabolism. It influences glucose metabolism by potentiating the action as taking part in insulin signal amplification mechanism. A placebo-controlled single blind, prospective study was carried out to investigate the effect of chromium supplementation on blood glucose, HbA1C and lipid profile in newly onset patients with type-2 diabetes. Total 40 newly onset type-2 diabetics were selected and after one month stabilization further randomly divided into two groups viz. study group and placebo group. The study group received 9 gm brewer’s yeast (42 μ Cr) daily and the other placebo group received yeast devoid of chromium for 3 months. Subjects were instructed not to change their normal eating and living habits. Fasting blood glucose, HbA1C and lipid profile were analyzed at beginning and completion of the study. Results revealed that fasting blood glucose level significantly reduced in the subjects consuming yeast supplemented with chromium (197.65±6.68 to 103.68±6.64 mg/dl; p<0.001). HbA1C values improved significantly from 9.51±0.26% to 6.86±0.28%; p<0.001 indicating better glycaemic control. In experimental group total cholesterol, TG and LDL levels were also significantly reduced from 199.66±3.11 to 189.26±3.01 mg/dl; p<0.02, 144.94±8.31 to 126.01±8.26; p<0.05 and 119.19±1.71 to 99.58±1.10; p<0.001 respectively. These data demonstrate beneficial effect of chromium supplementation on glycaemic control and lipid variables in subjects with newly onset type-2 diabetes.

Keywords: type-2 diabetes, chromium, glucose, HbA1C

Procedia PDF Downloads 221
27780 The First Step to Standardization of Iranian Buffalo Milk: Physicochemical Characterization

Authors: Farnoosh Attar

Abstract:

Nowadays, buffalo’s milk due to has highly nutritional properties, has a special place among consumers and its application for the production of dairy products due to the high technological properties is increasing day by day. In the present study, the physicochemical characteristics of Iranian buffalo’s milk were compared with cow's milk. According to chemical analysis, the amount of fat, protein, and total solid was higher in buffalo milk than cow's milk (respectively, 8.2%, 4.73%, and 15.92% compared with 3.5%, 3.25%, and 12.5%). Also, the percentage of cholesterol buffalo’s milk was less than in cow's milk. In contrast, no significant difference between the pH, acidity, and specific gravity was observed. The size of buffalo milk fat globules was larger than cow's milk. In addition, the profile of buffalo free fatty acids milk showed the relatively high distribution of long chain saturated fatty acids. The presence of four major bands related to αs casein, β casein, β-lactoglobulin, and α-lactalbumin with quite higher intensity than cow’s milk was also observed. The results obtained will provide a reference investigation to improve the developing of buffalo milk standard.

Keywords: buffalo milk, physicochemical characterization, standardization, dairy products

Procedia PDF Downloads 424
27779 Chemical Composition of Volatiles Emitted from Ziziphus jujuba Miller Collected during Different Growth Stages

Authors: Rose Vanessa Bandeira Reidel, Bernardo Melai, Pier Luigi Cioni, Luisa Pistelli

Abstract:

Ziziphus jujuba Miller is a common species of the Ziziphus genus (Rhamnaceae family) native to the tropics and subtropics known for its edible fruits, fresh consumed or used in healthy food, as flavoring and sweetener. Many phytochemicals and biological activities are described for this species. In this work, the aroma profiles emitted in vivo by whole fresh organs (leaf, bud flower, flower, green and red fruits) were analyzed separately by mean of solid phase micro-extraction (SPME) coupled with gas chromatography mass spectrometry (GC-MS). The emitted volatiles from different plant parts were analysed using Supelco SPME device coated with polydimethylsiloxane (PDMS, 100µm). Fresh plant material was introduced separately into a glass conical flask and allowed to equilibrate for 20 min. After the equilibration time, the fibre was exposed to the headspace for 15 min at room temperature, the fibre was re-inserted into the needle and transferred to the injector of the CG and CG-MS system, where the fibre was desorbed. All the data were submitted to multivariate statistical analysis, evidencing many differences amongst the selected plant parts and their developmental stages. A total of 144 compounds were identified corresponding to 94.6-99.4% of the whole aroma profile of jujube samples. Sesquiterpene hydrocarbons were the main chemical class of compounds in leaves also present in similar percentage in flowers and bud flowers where (E, E)-α-farnesene was the main constituent in all cited plant parts. This behavior can be due to a protection mechanism against pathogens and herbivores as well as resistance to abiotic factors. The aroma of green fruits was characterized by high amount of perillene while the red fruits release a volatile blend mainly constituted by different monoterpenes. The terpenoid emission of flesh fruits has important function in the interaction with animals including attraction of seed dispersers and it is related to a good quality of fruits. This study provides for the first time the chemical composition of the volatile emission from different Ziziphus jujuba organs. The SPME analyses of the collected samples showed different patterns of emission and can contribute to understand their ecological interactions and fruit production management.

Keywords: Rhamnaceae, aroma profile, jujube organs, HS-SPME, GC-MS

Procedia PDF Downloads 229
27778 25-Hydroxy Vit D, Adiponectin Levels and Cardiometabolic Risk Factors in a Sample of Obese Children

Authors: Nayera E. Hassan, Sahar A. El-Masry, Rokia A. El Banna, Mones M. Abu Shady, Muhammad Al-Tohamy, Manal Mouhamed Ali, Mehrevan M. Abd El-Moniem, Mona Anwar

Abstract:

Association between vitamin D, adiponectin and obesity is a matter of debate, as they play important role in linking obesity with different cardiometabolic risk factors. Objectives: Evaluation of the association between metabolic risk factors with both adiponectin and vitamin D levels and that between adiponectin and vitamin D among obese Egyptian children. Subjects and Methods: This case-control cross-sectional study consisted of 65 obese and 30 healthy children, aged 8-11 years. 25-hydroxy vitamin D (25(OH) D) level, serum adiponectin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) were measured. Results: The mean 25(OH) D levels in the obese and control groups were 29.9± 10.3 and 39.7 ± 12.7 ng/mL respectively (P < 0.001). The mean 25(OH) D and adiponectin levels in the obese were lower than that in the control group (P < 0.0001). 25(OH) D were inversely correlated with body mass index (BMI), triglyceride, total cholesterol and LDL-cholesterol (LDL-C), while adiponectin level were inversely correlated with systolic blood pressure (SBP), and diastolic blood pressure (DBP), and positively correlated with HDL-C. However, there is no relation between 25(OH) D and adiponectin levels among obese children and total sample. Conclusion: In spite of strong association between vitamin D and adiponectin levels with metabolic risk factors and obesity, there is no relation between 25(OH) D and adiponectin levels. In obese children, there are significant negative correlations between 25(OH) D with lipid profile, and between adiponectin levels with blood pressure. At certain adiponectin level, the relation between it and BMI disappears.

Keywords: 25-hydroxy vitamin D, adiponectin, lipid profile, blood pressure, children

Procedia PDF Downloads 350
27777 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 137
27776 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska

Abstract:

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)

Procedia PDF Downloads 594
27775 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 400
27774 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems

Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo

Abstract:

Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.

Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation

Procedia PDF Downloads 65
27773 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: energy storage, power distribution system, solar generator, voltage level

Procedia PDF Downloads 115
27772 Experimental and Computational Investigations of Baffle Position Effects on ‎the Performance of Oil and Water Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah‏‎, Md Azlin Md Said ‎

Abstract:

Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow ‎uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. ‎In this study, the effect on hydraulic performance of different baffle structure positions inside a tank ‎was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the ‎numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For ‎laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The ‎measurements were compared with the result of the computational model. The results of the ‎experimental and computational simulations indicate that the best location of a baffle structure is ‎achieved when the standard deviation of the velocity profile and the volume of the circulation zone ‎inside the tank are minimized.‎

Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet

Procedia PDF Downloads 302
27771 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model

Procedia PDF Downloads 185
27770 Knowledge, Attitude and Practices Regarding Advance Directives among Resident Physicians in Vicente Sotto Memorial Medical Center

Authors: Marica Pidor-Quingco, Francis Cabatingan

Abstract:

Background: One of the essential roles of a physician is to assess a patient’s worth and support them in making decisions regarding their future preferences when it comes to medical care. Advance Directives is a patient-centered approach which is liked to a better-quality treatment at the end of life. General Objective: To assess and describe the knowledge, attitudes and practices of resident physicians regarding advance directive among the resident physicians in Vicente Sotto Memorial Medical Study. Methods: An analytical cross-sectional study was conducted at Vicente Sotto Memorial Medical Center. There was a total of 129 respondents who gave their consent and was given survey questionnaire containing the demographic profile, knowledge, attitude and practices. Categorical variables were presented as frequency and percentage. Chi Square Test was used to determine the association of demographic profile with knowledge and attitude. Man-Whitney U test was utilized for the association of age with knowledge and attitude. Results: Out of 129 respondents, 36.59% were in favor towards self-determination and autonomy. Majority of the revealed an adequate knowledge and positive attitude regarding advance directives. Based on the results, there were no significant correlations between sociodemographic of the residents towards to knowledge and attitude. Over 66.7% of the respondents had used Advance Directives to their patients but 25% were not comfortable about it. Though most of the respondents was able to discuss AD with their patients, 7.0% of them are not willing to open the topic to the family. Conclusion: VSMMC is a tertiary hospital which also caters Hospice, Palliative and Supportive care to the patients. One of the services offered is initiating Advance Directives which may be a factor for a positive knowledge, attitude and practices towards this topic.

Keywords: advance directives, philippines, physicians, palliative

Procedia PDF Downloads 114
27769 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 99
27768 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein

Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra

Abstract:

Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.

Keywords: TSPO, molecular modeling, imaging, docking

Procedia PDF Downloads 436
27767 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 251
27766 Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.

Keywords: apple, biodiversity, polyphenols, antioxidant activity, HPLC-DAD, characterization

Procedia PDF Downloads 119
27765 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production

Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas

Abstract:

Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.

Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule

Procedia PDF Downloads 155
27764 Trump’s COVID-19 Discourse: Downgrading the Fundamentals of the Political Fair Play

Authors: Gustavo Naranjo Maroto, Dolores Fernandez Martinez

Abstract:

Context has always been essential to understand any reaction from every human being, and words, whether written or spoken, are definitely a powerful representative sample of human reaction. This study starts with an accurate breakdown of the context in which the current president of the US, Mr. Donald J. Trump is conveying his discourses in order to be able to judge them from a critical discourse analysis point of view. The present world’s scenario with a pandemic disease in form of Covid-19 that is threatening the world and certainly putting at risk the so called 'Welfare State', the role of the United States as the first superpower on earth nowadays, the very peculiar profile of President Trump not only as a politician but as a persona, and the fact of being on the verge of a very controversial presidential elections are without doubt a great and undeniable opportunity for the implementation of the critical discourse analysis methodology. Hence, this research will primarily analyze in detail some of the most interesting discourses delivered by Trump in different media since the very beginning of the outbreak of the coronavirus pandemic in the United States of America (February, 2020), sadly very often downplayed by President Trump, until the final result of the upcoming presidential election scheduled for Tuesday, November 3, 2020, where the political discourse has been dramatically downgraded to a very dangerous state, putting in jeopardy the fundamentals of the political fair play in terms of speech. Finally, the study will hopefully conclude with the final outcome of the data analyzed, allowing to picture how significant the context can be concerning linguistics on the one hand, in terms of shaping or altering the message that the issuer thought to convey in the first place, and on the other hand, generously assessing to what extend the recipients of the message are influenced by the message in terms of receptiveness.

Keywords: Covid-19, critical discourse analysis, Donald J. Trump, political discourse

Procedia PDF Downloads 105
27763 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.

Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis

Abstract:

Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.

Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress

Procedia PDF Downloads 227
27762 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)

Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida

Abstract:

Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.

Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction

Procedia PDF Downloads 377
27761 Awareness on Department of Education’s Disaster Risk Reduction Management Program at Oriental Mindoro National High School: Basis for Support School DRRM Program

Authors: Nimrod Bantigue

Abstract:

The Department of Education is continuously providing safe teaching-learning facilities and hazard-free environments to the learners. To achieve this goal, teachers’ awareness of DepEd’s DRRM programs and activities is extremely important; thus, this descriptive correlational quantitative study was conceptualized. This research answered four questions on the profile and level of awareness of the 153 teacher respondents of Oriental Mindoro National High School for the academic year 2018-2019. Stratified proportional sampling was employed, and both descriptive and inferential statistics were utilized to treat data. The findings revealed that the majority of the teachers at OMNHS are female and are in the age bracket of 20-40. Most are married and pursue graduate studies. They have moderate awareness of the Department of Education’s DRRM programs and activities in terms of assessment of risks activities, planning activities, implementation activities during disaster and evaluation and monitoring activities with 3.32, 3.12, 3.40 and 3.31 as computed means, respectively. Further, the result showed a significant relationship between the profile of the respondents such as age, civil status and educational attainment and the level of awareness. On the contrary, sex does not have a significant relationship with the level of awareness. The Support School DRRM program with Utilization Guide on School DRRM Manual was proposed to increase, improve and strengthen the weakest areas of awareness rated in each DRRM activity, such as assessment of risks, planning, and implementation during disasters and monitoring and evaluation.

Keywords: awareness, management, monitoring, risk reduction

Procedia PDF Downloads 195
27760 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data

Authors: Yehya Rasool, Mohit Agrawal

Abstract:

The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.

Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data

Procedia PDF Downloads 67
27759 Adjustment of the Level of Vibrational Force on Targeted Teeth

Authors: Amin Akbari, Dongcai Wang, Huiru Li, Xiaoping Du, Jie Chen

Abstract:

The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value.

Keywords: finite element method, orthodontic treatment, stress analysis, tooth movement, vibrational force

Procedia PDF Downloads 210
27758 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 338
27757 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.

Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion

Procedia PDF Downloads 363
27756 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 298
27755 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator

Authors: Siva K. Bathina, Sudheer Siddapureddy

Abstract:

Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.

Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis

Procedia PDF Downloads 172
27754 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills

Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry

Abstract:

The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.

Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel

Procedia PDF Downloads 360
27753 Public Debt Shocks and Public Goods Provisioning in Nigeria: Implication for National Development

Authors: Amenawo I. Offiong, Hodo B. Riman

Abstract:

Public debt profile of Nigeria has continuously been on the increase over the years. The drop in international crude oil prices has further worsened revenue position of the country, thus, necessitating further acquisition of public debt to bridge the gap in revenue deficit. Yet, when we look back at the increasing public sector spending, there are concerns that the government spending do not amount to increase in public goods provided for the country. Using data from 1980 to 2014 the study therefore seeks to investigate the factors responsible for the poor provision of public goods in the face of increasing public debt profile. Using the unrestricted VAR model Governance and Tax revenue were introduced into the model as structural variables. The result suggested that governance and tax revenue were structural determinants of the effectiveness of public goods provisioning in Nigeria. The study therefore identified weak governance as the major reason for the non-provision of public goods in Nigeria. While tax revenue exerted positive influence on the provisions of public goods, weak/poor governance was observed to crowd the benefits from increase tax revenue. The study therefore recommends reappraisal of the governance system in Nigeria. Elected officers in governance should be more transparent and accountable to the electorates they represent. Furthermore, the study advocates for an annual auditing of all government MDAs accounts by external auditors to ensure (a) accountability of public debts utilization, (b) transparent in implementation of program support funds, (c) integrity of agencies responsible for program management, and (d) measuring program effectiveness with amount of funds expended.

Keywords: impulse response function, public debt shocks, governance, public goods, tax revenue, vector auto-regression

Procedia PDF Downloads 236
27752 Cfd Simulation for Urban Environment for Evaluation of a Wind Energy Potential of a Building or a New Urban Planning

Authors: David Serero, Loic Couton, Jean-Denis Parisse, Robert Leroy

Abstract:

This paper presents an analysis method of airflow at the periphery of several typologies of architectural volumes. To understand the complexity of the urban environment on the airflows in the city, we compared three sites at different architectural scale. The research sets a method to identify the optimal location for the installation of wind turbines on the edges of a building and to achieve an improvement in the performance of energy extracted by precise localization of an accelerating wing called “aero foil”. The objective is to define principles for the installation of wind turbines and natural ventilation design of buildings. Instead of theoretical winds analysis, we combined numerical aeraulic simulations using STAR CCM + software with wind data, over long periods of time (greater than 1 year). If airflows computer fluid analysis (CFD) simulation of buildings are current, we have calibrated a virtual wind tunnel with wind data using in situ anemometers (to establish localized cartography of urban winds). We can then develop a complete volumetric model of the behavior of the wind on a roof area, or an entire urban island. With this method, we can categorize: - the different types of wind in urban areas and identify the minimum and maximum wind spectrum, - select the type of harvesting devices - fixing to the roof of a building, - the altimetry of the device in relation to the levels of the roofs - The potential nuisances around. This study is carried out from the recovery of a geolocated data flow, and the connection of this information with the technical specifications of wind turbines, their energy performance and their speed of engagement. Thanks to this method, we can thus define the characteristics of wind turbines to maximize their performance in urban sites and in a turbulent airflow regime. We also study the installation of a wind accelerator associated with buildings. The “aerofoils which are integrated are improvement to control the speed of the air, to orientate it on the wind turbine, to accelerate it and to hide, thanks to its profile, the device on the roof of the building.

Keywords: wind energy harvesting, wind turbine selection, urban wind potential analysis, CFD simulation for architectural design

Procedia PDF Downloads 122