Search results for: function analysis system technique
44996 Vibration and Parametric Instability Analysis of Delaminated Composite Beams
Authors: A. Szekrényes
Abstract:
This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.Keywords: delamination, free vibration, parametric excitation, sweep excitation
Procedia PDF Downloads 34644995 The Impact of Transformational Leadership and Interpersonal Interaction on Mentoring Function
Authors: Ching-Yuan Huang, Rhay-Hung Weng, Yi-Ting Chen
Abstract:
Mentoring functions will improve new nurses' job performance, provide support with new nurses, and then reduce the turnover rate of them. This study explored the impact of transformational leadership and interpersonal interaction on mentoring functions. We employed a questionnaire survey to collect data and selected a sample of new nurses from three hospitals in Taiwan. A total of 306 valid surveys were obtained. Multiple regression model analysis was conducted to test the study hypothesis. Inspirational motivation, idealized influence, and individualized consideration had a positive influence on overall mentoring function, but intellectual stimulation had a positive influence on career development function only. Perceived similarity and interaction frequency also had positive influences on mentoring functions. When the shift overlap rate exceeded 80%, mentoring function experienced a negative result. The transformational leadership of mentors actually would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had a positive influence on mentoring functions. Managers should enhance the transformational leadership of mentors by designing leadership training and motivation programs. Furthermore, nursing managers should promote the interaction between new staff nurses and their mentors, but the shift overlap rate should not exceed 80%.Keywords: interpersonal interaction, mentoring function, mentor, new nurse, transformational leadership
Procedia PDF Downloads 33244994 Spatial Point Process Analysis of Dengue Fever in Tainan, Taiwan
Authors: Ya-Mei Chang
Abstract:
This research is intended to apply spatio-temporal point process methods to the dengue fever data in Tainan. The spatio-temporal intensity function of the dataset is assumed to be separable. The kernel estimation is a widely used approach to estimate intensity functions. The intensity function is very helpful to study the relation of the spatio-temporal point process and some covariates. The covariate effects might be nonlinear. An nonparametric smoothing estimator is used to detect the nonlinearity of the covariate effects. A fitted parametric model could describe the influence of the covariates to the dengue fever. The correlation between the data points is detected by the K-function. The result of this research could provide useful information to help the government or the stakeholders making decisions.Keywords: dengue fever, spatial point process, kernel estimation, covariate effect
Procedia PDF Downloads 35144993 Unveiling the Impact of Ultra High Vacuum Annealing Levels on Physico-Chemical Properties of Bulk ZnSe Semiconductor
Authors: Kheira Hamaida, Mohamed Salah Halati
Abstract:
In this current paper, our aim work is to link as possible the obtained simulation results and the other experimental ones, just focusing on the electronic and optical properties of ZnSe. The predictive spectra of the total and partial densities of states using the Full Potential Linearized/Augmented Plane Wave method with the newly Tran-Blaha (TB) modified Becke-Johnson (mBJ) exchange-correlation potential (EXC). So the upper valence energy (UVE) levels contain the relative contribution of Se-(4p and 3d) states with considerable contribution from the electrons of Zn-2s orbital. The dielectric function of w-ZnSe, with its two parts, appears with a noticeable anisotropy character. The microscopic origins of the electronic states that are responsible for the observed peaks in the spectrum are determined through the decomposition of the spectrum to the individual contributions of the electronic transitions between the pairs of bands, where Vi is an occupied state in the valence band, and Ci is an unoccupied state in the conduction band. X-PES (X Ray-Photo Electron Spectroscopy) is an important technique used to probe the homogeneity, stoichiometry, and purity state of the title compound. In order to check the electron transitions derived from simulations and the others from Reflected Electron Energy Loss Spectroscopy (REELS) technique which was of great sensitivity, is used to determine the interband electronic transitions. In the optical window (Eg), all the electron energy states created were also determined through the specific gaussian deconvolution of the photoluminescence spectrum (PLS) that probed under a room temperature (RT).Keywords: spectroscopy, WIEN2K, IIB-VIA semiconductors, dielectric function
Procedia PDF Downloads 6544992 Proposal of Design Method in the Semi-Acausal System Model
Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented
Procedia PDF Downloads 48644991 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster
Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon
Abstract:
Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil
Procedia PDF Downloads 29344990 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model
Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady
Abstract:
The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle
Procedia PDF Downloads 36444989 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization
Authors: Karima Megdouli
Abstract:
The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.Keywords: ejector, supersonic, Taguchi, ANOVA, optimization
Procedia PDF Downloads 8844988 Applying the Underwriting Technique to Analyze and Mitigate the Credit Risks in Construction Project Management
Authors: Hai Chien Pham, Thi Phuong Anh Vo, Chansik Park
Abstract:
Risks management in construction projects is important to ensure the positive feasibility of the projects in which financial risks are most concerned while construction projects always run on a credit basis. Credit risks, therefore, require unique and technical tools to be well managed. Underwriting technique in credit risks, in its most basic sense, refers to the process of evaluating the risks and the potential exposure of losses. Risks analysis and underwriting are applied as a must in banks and financial institutions who are supporters for constructions projects when required. Recently, construction organizations, especially contractors, have recognized the significant increasing of credit risks which caused negative impacts to project performance and profit of construction firms. Despite the successful application of underwriting in banks and financial institutions for many years, there are few contractors who are applying this technique to analyze and mitigate the credit risks of their potential owners before signing contracts with them for delivering their performed services. Thus, contractors have taken credit risks during project implementation which might be not materialized due to the bankruptcy and/or protracted default made by their owners. With this regard, this study proposes a model using the underwriting technique for contractors to analyze and assess credit risks of their owners before making final decisions for the potential construction contracts. Contractor’s underwriters are able to analyze and evaluate the subjects such as owner, country, sector, payment terms, financial figures and their related concerns of the credit limit requests in details based on reliable information sources, and then input into the proposed model to have the Overall Assessment Score (OAS). The OAS is as a benchmark for the decision makers to grant the proper limits for the project. The proposed underwriting model is validated by 30 subjects in Asia Pacific region within 5 years to achieve their OAS, and then compare output OAS with their own practical performance in order to evaluate the potential of underwriting model for analyzing and assessing credit risks. The results revealed that the underwriting would be a powerful method to assist contractors in making precise decisions. The contribution of this research is to allow the contractors firstly to develop their own credit risk management model for proactively preventing the credit risks of construction projects and continuously improve and enhance the performance of this function during project implementation.Keywords: underwriting technique, credit risk, risk management, construction project
Procedia PDF Downloads 20944987 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions
Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes
Abstract:
The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae
Procedia PDF Downloads 25144986 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors
Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri
Abstract:
Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis
Procedia PDF Downloads 54744985 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System
Authors: Nicholas Pearce, Eun-jin Kim
Abstract:
Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.Keywords: cardiovascular system, left atrium, numerical model, MEF
Procedia PDF Downloads 11644984 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems
Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu
Abstract:
The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period. Procedia PDF Downloads 32544983 Study of Icons in Enterprise Application Software Context
Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal
Abstract:
Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.Keywords: HCI, icons, icon concreteness, icon recognition
Procedia PDF Downloads 25844982 Hawkes Process-Based Reflexivity Analysis in the Cryptocurrency Market
Authors: Alev Atak
Abstract:
We study the endogeneity in the cryptocurrency market over the branching ratio of the Hawkes process and evaluate the movement of self-excitability in the financial markets. We consider a semi-parametric self-exciting point process regression model where the excitation function is assumed to be smooth and decreasing but otherwise unspecified, and the baseline intensity is assumed to be a linear function of the regressors. We apply the empirical analysis to the three largest crypto assets, i.e. Bitcoin - Ethereum - Ripple, and provide a comparison with other financial assets such as SP500, Gold, and the volatility index VIX observed from January 2015 to December 2020. The results depict variable and high levels of endogeneity in the basket of cryptocurrencies under investigation, underlining the evidence of a significant role of endogenous feedback mechanisms in the price formation process.Keywords: hawkes process, cryptocurrency, endogeneity, reflexivity
Procedia PDF Downloads 8244981 Impact of Internal Control on Fraud Detection and Prevention: A Survey of Selected Organisations in Nigeria
Authors: Amos Olusola Akinola
Abstract:
The aim of this study is to evaluate the internal control system on fraud prevention in Nigerian business organizations. A survey research was undertaken in five organizations from the banking and manufacturing sectors in Nigeria using the simple random sampling technique and primary data was obtained with the aid structured questionnaire drawn on five likert’s scale. Four Hypotheses were formulated and tested using the T-test Statistics, Correlation and Regression Analysis at 95% confidence interval. It was discovered that internal control has a significant positive relationship with fraud prevention and that a weak internal control system permits fraudulent activities among staff. Based on the findings, it was recommended that organizations should continually and methodically review and evaluate the components of its internal control system whether activities are working as planned or not and that every organization should have pre-determined guidelines for conducting its operations and ensures compliance with these set guidelines while proactive steps should be taken to establish the independence of the internal audit by making the audit reportable to the governing council of an organization and not the chief executive officer.Keywords: internal control, internal system, internal audit, fraud prevention, fraud detection
Procedia PDF Downloads 38544980 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 29544979 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease
Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller
Abstract:
Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics
Procedia PDF Downloads 7644978 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles
Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh
Abstract:
This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs
Procedia PDF Downloads 21444977 Improving Communication System through Router Configuration: The Nigerian Navy Experience
Authors: Saidu I. Rambo, Emmanuel O. Ibam, Sunday O. Adewale
Abstract:
The configuration of routers for effective communication in the Nigerian Navy (NN) enables the navy to improve on the current communication systems. The current system is faced with challenges that make the systems partially effective. The major implementation of the system is to configure routers using hierarchical model and obtaining a VSAT option on C-band platform. These routers will act as a link between Naval Headquarters and the Commands under it. The routers main responsibilities are to forward packets from source location to destination using a Link State Routing Protocol (LSRP). Also using the Point to Point Protocol (PPP), creates a strong encrypted password using Challenge Handshake Authentication Protocol (CHAP) which uses one-way hash function of Message Digest 5 (MD5) to provide complete protection against hackers/intruders. Routers can be configured using a Linux operating system or internet work operating system in the Microsoft platform. With this, system packets can be forwarded to various locations more effectively than the present system being used.Keywords: C-band, communication, router, VSAT
Procedia PDF Downloads 36644976 Technique for Online Condition Monitoring of Surge Arresters
Authors: Anil S. Khopkar, Kartik S. Pandya
Abstract:
Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current
Procedia PDF Downloads 6744975 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment
Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang
Abstract:
Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique
Procedia PDF Downloads 39944974 Indoor Robot Positioning with Precise Correlation Computations over Walsh-Coded Lightwave Signal Sequences
Authors: Jen-Fa Huang, Yu-Wei Chiu, Jhe-Ren Cheng
Abstract:
Visible light communication (VLC) technique has become useful method via LED light blinking. Several issues on indoor mobile robot positioning with LED blinking are examined in the paper. In the transmitter, we control the transceivers blinking message. Orthogonal Walsh codes are adopted for such purpose on auto-correlation function (ACF) to detect signal sequences. In the robot receiver, we set the frame of time by 1 ns passing signal from the transceiver to the mobile robot. After going through many periods of time detecting the peak value of ACF in the mobile robot. Moreover, the transceiver transmits signal again immediately. By capturing three times of peak value, we can know the time difference of arrival (TDOA) between two peak value intervals and finally analyze the accuracy of the robot position.Keywords: Visible Light Communication, Auto-Correlation Function (ACF), peak value of ACF, Time difference of Arrival (TDOA)
Procedia PDF Downloads 32644973 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters
Authors: Rama Debbarma
Abstract:
The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.Keywords: linear base isolator, earthquake, optimization, uncertain parameters
Procedia PDF Downloads 43544972 Development a Fine Motor and Executive Function Assessment (FiM&EF) for Assessing School Aged Children with Attention Deficit/Hyperactivity Disorder (AD/HD)
Authors: Negar Miri-Lavasani
Abstract:
Background: Children with Attention-deficit/hyperactivity disorder (ADHD) show fine motor skills difficulties, and it is controversial whether this difficulty is based on problems in their fine motor skills or their executive function impairments. Objectives of Study: The Fine Motor and Executive Function assessment tool (FiM&EF) was developed to answer the question, ‘Do the fine motor skill deficits in children with ADHD come from their fine motor problems or is it caused by their executive function problems?’. This paper describes the development of a new assessment of Fine Motor and Executive Function (FiM &EF) needed by primary school students with ADHD aged 6-12 years with ADHD. Methods: A study on the content validity established through a survey of a panel of nine experts is explained in detail. Findings: Most the experts agreed such an assessment was needed and two items were deleted as a result of experts’ feedback. Relevance to Clinical Practice: Distinguishing the main reason of fine motor problem in these children could help the clinician for their therapy plans. Knowledge on the influence of executive functioning on fine motor ability in selected age children with ADHD would provide a clearer clinical picture of the fine motor capabilities and executive function for these children.Keywords: children with ADHD, executive function, fine motor, test
Procedia PDF Downloads 29044971 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier
Authors: Kittipong Tripetch
Abstract:
This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumptionKeywords: grounded active inductor, floating active inductor, fully differential bandpass amplifier
Procedia PDF Downloads 42744970 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 11144969 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 47744968 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 14644967 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique
Authors: Manoj Gupta, Nirmendra Singh Bhadauria
Abstract:
Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion
Procedia PDF Downloads 606