Search results for: energy consumption analysis
34386 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 15734385 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration
Procedia PDF Downloads 5334384 Drivers of Energy Saving Behaviour: The Relative Influence of Normative, Habitual, Intentional, and Situational Processes
Authors: Karlijn Van Den Broek, Ian Walker, Christian Klöckner
Abstract:
Campaigns aiming to induce energy-saving behaviour among householders use a wide range of approaches that address many different drivers thought to underpin this behaviour. However, little research has compared the relative importance of the different factors that influence energy behaviour, meaning campaigns are not informed about where best to focus resources. Therefore, this study applies the Comprehensive Action Determination Model (CADM) to compare the role of normative, intentional, habitual, and situational processes on energy-saving behaviour. An online survey on a sample of households (N = 247) measured the CADM variables and the data was analysed using structural equation modelling. Results showed that situational and habitual processes were best able to account for energy saving behaviour while normative and intentional processes had little predictive power. These findings suggest that policymakers should move away from motivating householders to save energy and should instead focus their efforts on changing energy habits and creating environments that facilitate energy saving behaviour. These findings add to the wider development in social and environmental psychology that emphasizes the importance of extra-personal variables such as the physical environment in shaping behaviour.Keywords: energy consumption, behavioural modelling, environmental psychology theory, habits, values
Procedia PDF Downloads 25834383 End-User Behavior: Analysis of Their Role and Impacts on Energy Savings Achievements
Authors: Margarida Plana
Abstract:
End-users behavior has become one of the main aspects to be solved on energy efficiency projects. Especially on the residential sector, the end-users have a direct impact that affects the achievement of energy saving’s targets. This paper is focused on presenting and quantify the impact of end-users behavior on basis of the analysis of real projects’ data. The analysis study which is the role of buiding’s occupants and how their behavior can change the success of energy efficiency projects how to limit their impact. The results obtained show two main conclusions. The first one is easiest to solve: we need to control and limit the end-users interaction with the equipment operation to be able to reach the targets fixed. The second one: as the plugged equipment are increasing exponentially on the residential sector, big efforts of disseminations are needed in order to explain to citizens the impact of their day by day actions through dissemination campaigns.Keywords: end-users impacts, energy efficiency, energy savings, impact limitations
Procedia PDF Downloads 36134382 Preference Aggregation and Mechanism Design in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium
Procedia PDF Downloads 11634381 Design of a Customized Freshly-Made Fruit Salad and Juices Vending Machine
Authors: María Laura Guevara Campos
Abstract:
The increasing number of vending machines makes it easy for people to find them more frequently in stores, universities, workplaces, and even hospitals. These machines usually offer products with high contents of sugar and fat, which, if consumed regularly, can result in serious health threats, as overweight and obesity. Additionally, the energy consumption of these machines tends to be high, which has an impact on the environment as well. In order to promote the consumption of healthy food, a vending machine was designed to give the customer the opportunity to choose between a customized fruit salad and a customized fruit juice, both of them prepared instantly with the ingredients selected by the customer. The main parameters considered to design the machine were: the storage of the preferred fruits in a salad and/or in a juice according to a survey, the size of the machine, the use of ecologic recipients, and the overall energy consumption. The methodology used for the design was the one proposed by the German Association of Engineers for mechatronics systems, which breaks the design process in several stages, from the elaboration of a list of requirements through the establishment of the working principles and the design concepts to the final design of the machine, which was done in a 3D modelling software. Finally, with the design of this machine, the aim is to contribute to the development and implementation of healthier vending machines that offer freshly-made products, which is not being widely attended at present.Keywords: design, design methodology, mechatronics systems, vending machines
Procedia PDF Downloads 13334380 Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.Keywords: supply chain management, green supply chain management, system dynamics, energy consumption
Procedia PDF Downloads 13934379 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 7834378 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.Keywords: desalination, exergy, membrane distillation, second law efficiency
Procedia PDF Downloads 36434377 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador
Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio
Abstract:
Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.Keywords: public transport, electric mobility, energy, ecuador
Procedia PDF Downloads 9034376 Developing Model for Fuel Consumption Optimization in Aviation Industry
Authors: Somesh Kumar Sharma, Sunanad Gupta
Abstract:
The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.Keywords: fuel consumption, civil aviation industry, neural networking, optimization
Procedia PDF Downloads 34134375 Exergy and Energy Analysis of Pre-Heating Unit of Fluid Catalytic Cracking Unit in Kaduna Refining and Petrochemical Company
Authors: M. Nuhu, S. Bilal, A. A. Hamisu, J. A. Abbas, Y. Z. Aminu, P. O. Helen
Abstract:
Exergy and energy analysis of preheating unit of FCCU of KRPC has been calculated and presented in this study. From the design, the efficiency of each heat exchanger was 86%. However, on completion of this work the efficiencies was calculated to be 39.90%, 55.66%, 56.22%, and 57.14% for 16E02, 16E03, 16E04, and 16E05 respectively. 16E04 has the minimum energy loss of 0.86%. The calculated second law and exergy efficiencies of the system were 43.01 and 56.99% respectively.Keywords: exergy analysis, ideal work, efficiency, exergy destruction, temperature
Procedia PDF Downloads 43734374 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)
Authors: Andreas Rüdiger
Abstract:
The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.Keywords: wastewater treatment, biofiltration, touristic areas, energy saving
Procedia PDF Downloads 9234373 Evaluating the Effect of Splitting Wind Farms on Power Output
Authors: Nazanin Naderi, Milton Smith
Abstract:
Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation
Procedia PDF Downloads 58634372 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital
Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis
Abstract:
Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.Keywords: energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities
Procedia PDF Downloads 15234371 An Approach to Consumption of Exhaustible Resources Based on Islamic Justice and Hartwick Criteria
Authors: Hamed Najafi, Ghasem Nikjou
Abstract:
Nowadays, there is an increasing attention to the resources scarcity issues. Because of failure in present patterns in the field of the allocation of exhaustible resources between generations and the challenges related to economic justice supply, it is supposed, to present a pattern from the Islamic perspective in this essay. By using content analysis of religious texts, we conclude that governments should remove the gap which is exists between the per capita income of the poor and their minimum consumption (necessary consumption). In order to preserve the exhaustible resources for poor people) not for all), between all generations, government should invest exhaustible resources on endless resources according to Hartwick’s criteria and should spend these benefits for poor people. But, if benefits did not cover the gap between minimum consumption and per capita income of poor levels in one generation, in this case, the government is responsible for covering this gap through the direct consumption of exhaustible resources. For an exact answer to this question, ‘how much of exhaustible resources should expense to maintain justice between generations?’ The theoretical and mathematical modeling has been used and proper function has been provided. The consumption pattern is presented for economic policy makers in Muslim countries, and non-Muslim even, it can be useful.Keywords: exhaustible resources, Islamic justice, intergenerational justice, distribution of resources, Hartwick criteria
Procedia PDF Downloads 19234370 Wireless Sensor Network Energy Efficient and QoS-Aware MAC Protocols: A Survey
Authors: Bashir Abdu Muzakkari, Mohamad Afendee Mohamad, Mohd Fadzil Abdul Kadir
Abstract:
Wireless Sensor Networks (WSNs) is an aggregation of several tiny, low-cost sensor nodes, spatially distributed to monitor physical or environmental status. WSN is constantly changing because of the rapid technological advancements in sensor elements such as radio, battery and operating systems. The Medium Access Control (MAC) protocols remain very vital in the WSN because of its role in coordinating communication amongst the sensors. Other than battery consumption, packet collision, network lifetime and latency are factors that largely depend on WSN MAC protocol and these factors have been widely treated in recent days. In this paper, we survey some latest proposed WSN Contention-based, Scheduling-based and Hybrid MAC protocols while presenting an examination, correlation of advantages and limitations of each protocol. Concentration is directed towards investigating the treatment of Quality of Service (QoS) performance metrics within these particular protocols. The result shows that majority of the protocols leaned towards energy conservation. We, therefore, believe that other performance metrics of guaranteed QoS such as latency, throughput, packet loss, network and bandwidth availability may play a critical role in the design of future MAC protocols for WSNs.Keywords: WSN, QoS, energy consumption, MAC protocol
Procedia PDF Downloads 40134369 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 11834368 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 8234367 Dynamic Effects of Energy Consumption, Economic Growth, International Trade and Urbanization on Environmental Degradation in Nigeria
Authors: Abdulkarim Yusuf
Abstract:
Motivation: A crucial but difficult goal for governments and policymakers in Nigeria in recent years has been the sustainability of economic growth. This goal must be accomplished by regulating or lowering greenhouse gas emissions, which calls for switching to a low- or zero-carbon production system. The lack of in-depth empirical studies on the environmental impact of socioeconomic variables on Nigeria and a number of unresolved issues from earlier research is what led to the current study. Objective: This study fills an important empirical gap by investigating the existence of an Environmental Kuznets Curve hypothesis and the long and short-run dynamic impact of socioeconomic variables on ecological sustainability in Nigeria. Data and method: Annual time series data covering the period 1980 to 2020 and the Autoregressive Distributed Lag technique in the presence of structural breaks were adopted for this study. Results: The empirical findings support the existence of the environmental Kuznets curve hypothesis for Nigeria in the long and short run. Energy consumption and total import exacerbate environmental deterioration in the long and short run, whereas total export improves environmental quality in the long and short run. Financial development, which contributed to a conspicuous decrease in the level of environmental destruction in the long run, escalated it in the short run. In contrast, urbanization caused a significant increase in environmental damage in the long run but motivated a decrease in biodiversity loss in the short run. Implications: The government, policymakers, and all energy stakeholders should take additional measures to ensure the implementation and diversification of energy sources to accommodate more renewable energy sources that emit less carbon in order to promote efficiency in Nigeria's production processes and lower carbon emissions. In order to promote the production and trade of environmentally friendly goods, they should also revise and strengthen environmental policies. With affordable, dependable, and sustainable energy use for higher productivity and inclusive growth, Nigeria will be able to achieve its long-term development goals of good health and wellbeing.Keywords: economic growth, energy consumption, environmental degradation, environmental Kuznets curve, urbanization, Nigeria
Procedia PDF Downloads 5434366 Digital Transformation: Actionable Insights to Optimize the Building Performance
Authors: Jovian Cheung, Thomas Kwok, Victor Wong
Abstract:
Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance
Procedia PDF Downloads 15934365 The Impact of Coffee Consumption to Body Mass Index and Body Composition
Authors: A.L. Tamm, N. Šott, J. Jürimäe, E. Lätt, A. Orav, Ü. Parm
Abstract:
Coffee is one of the most frequently consumed beverages in the world but still its effects on human organism are not completely understood. Coffee has also been used as a method for weight loss, but its effectiveness has not been proved. There is also not similar comprehension in classifying overweight in choosing between body mass index (BMI) and fat percentage (fat%). The aim of the study was to determine associations between coffee consumption and body composition. Secondly, to detect which measure (BMI or fat%) is more accurate to use describing overweight. Altogether 103 persons enrolled the study and divided into three groups: coffee non-consumers (n=39), average coffee drinkers, who consumed 1 to 4 cups (1 cup = ca 200ml) of coffee per day (n=40) and excessive coffee consumers, who drank at least five cups of coffee per day (n=24). Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). Participants´ body composition was detected with dual energy X-ray absorptiometry (DXA, Hologic) and general data (history of chronic diseases included) and information about coffee consumption, and physical activity level was collected with questionnaires. Results of the study showed that excessive coffee consumption was associated with increased fat-free mass. It could be foremost due to greater physical activity level in school time or greater (not significant) male proportion in excessive coffee consumers group. For estimating the overweight the fat% in comparison to BMI recommended, as it gives more accurate results evaluating chronical disease risks. In conclusion coffee consumption probably does not affect body composition and for estimating the body composition fat% seems to be more accurate compared with BMI.Keywords: body composition, body fat percentage, body mass index, coffee consumption
Procedia PDF Downloads 42034364 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 11034363 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030
Authors: Paul Kipchumba
Abstract:
Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.Keywords: co2 emissions, cost factors, electricity generation, non-cost factors
Procedia PDF Downloads 36534362 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency
Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee
Abstract:
Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system
Procedia PDF Downloads 43434361 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle
Authors: P. Kacejko, M. Wendeker
Abstract:
The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption
Procedia PDF Downloads 12234360 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5834359 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China
Authors: Bai-Chen Xie, Xian-Peng Chen
Abstract:
China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation
Procedia PDF Downloads 9234358 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.
Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi
Abstract:
With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition
Procedia PDF Downloads 47534357 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding
Authors: Amir E. Amirzadeh, Richard K. Strand
Abstract:
Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making
Procedia PDF Downloads 70