Search results for: cost-based structural optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7383

Search results for: cost-based structural optimization

6813 Design and Optimization of a 6 Degrees of Freedom Co-Manipulated Parallel Robot for Prostate Brachytherapy

Authors: Aziza Ben Halima, Julien Bert, Dimitris Visvikis

Abstract:

In this paper, we propose designing and evaluating a parallel co-manipulated robot dedicated to low-dose-rate prostate brachytherapy. We developed 6 degrees of freedom compact and lightweight robot easy to install in the operating room thanks to its parallel design. This robotic system provides a co-manipulation allowing the surgeon to keep control of the needle’s insertion and consequently to improve the acceptability of the plan for the clinic. The best dimension’s configuration was solved by calculating the geometric model and using an optimization approach. The aim was to ensure the whole coverage of the prostate volume and consider the allowed free space around the patient that includes the ultrasound probe. The final robot dimensions fit in a cube of 300 300 300 mm³. A prototype was 3D printed, and the robot workspace was measured experimentally. The results show that the proposed robotic system satisfies the medical application requirements and permits the needle to reach any point within the prostate.

Keywords: medical robotics, co-manipulation, prostate brachytherapy, optimization

Procedia PDF Downloads 207
6812 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 494
6811 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm

Procedia PDF Downloads 326
6810 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma

Abstract:

This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 394
6809 Perceived Structural Empowerment and Work Commitment among Intensive Care nurses in SMC

Authors: Ridha Abdulla Al Hammam

Abstract:

Purpose: to measure the extent of perceived structural empowerment and work commitment the intensive care unit in SMC have in their work place. Background: nurses’ access to power structures (information, recourses, opportunity, and support) directly influences their productivity, retention, and job satisfaction. Exploring nurses’ level and sources of work commitment (affective, normative, and continuance) is very essential to guide nursing leaders making decisions to improve work environment to facilitate effective nursing care. Both concepts (Structural Empowerment and Work Commitment) were never investigated in our critical care unit. Methods: a sample of 50 nurses attained from the Intensive Care Unit (Adult). Conditions for Workplace Effectiveness Questionnaire and Three-Component Model Employee Commitment Survey were used to measure the two concepts respectively. The study is quantitative, descriptive, and correlational in design. Results: the participants reported moderate structural empowerment provided by their work place (M=15 out of 20). The sample perceived high access to opportunity mainly through gaining more skills (M=4.45 out of 5) where the rest power structures were perceived with moderate accessibility. The participants’ affective commitment (M=5.6 out of 7) to work in the ICU overweighed their normative and continuance commitment (M=5.1, M=4.9 out of 7) implying a stronger emotional connection with their unit. Strong positive and significant correlations were observed between the participants’ structural empowerment scores and all work commitment sources. Conclusion: these results provided an insight on aspects of work environment that need to be fostered and improved in our intensive care unit which have a direct linkage to nurses’ work commitment and potentially to their quality of care they provide.

Keywords: structural empowerment, commitment, intensive care, nurses

Procedia PDF Downloads 288
6808 Speed Control of DC Motor Using Optimization Techniques Based PID Controller

Authors: Santosh Kumar Suman, Vinod Kumar Giri

Abstract:

The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.

Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE

Procedia PDF Downloads 422
6807 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model

Authors: Jai Heui Kim, Sotheara Veng

Abstract:

This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.

Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility

Procedia PDF Downloads 299
6806 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 101
6805 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 168
6804 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building

Authors: Kittipob Kondee, Chutima Prommak

Abstract:

In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.

Keywords: indoor positioning system, optimization system design, multi-floor building, wireless sensor networks

Procedia PDF Downloads 247
6803 Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions

Authors: Medani Khaled Ben Oualid

Abstract:

Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, metaheuristic techniques, whale optimization algorithm, real power loss minimization, contingency conditions

Procedia PDF Downloads 92
6802 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material

Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya

Abstract:

The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.

Keywords: corrugated sandwich panel, fire-reaction properties, plywood, renewable material

Procedia PDF Downloads 157
6801 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems

Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi

Abstract:

The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.

Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm

Procedia PDF Downloads 178
6800 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 515
6799 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 149
6798 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots

Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett

Abstract:

Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.

Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry

Procedia PDF Downloads 74
6797 A New Tactical Optimization Model for Bioenergy Supply Chain

Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon

Abstract:

Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.

Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels

Procedia PDF Downloads 516
6796 Analysis of the Relations between Obsessive Compulsive Symptoms and Anxiety Sensitivity in Adolescents: Structural Equation Modeling

Authors: Ismail Seçer

Abstract:

The purpose of this study is to analyze the predictive effect of anxiety sensitivity on obsessive compulsive symptoms. The sample of the study consists of 542 students selected with appropriate sampling method from the secondary and high schools in Erzurum city center. Obsessive Compulsive Inventory and Anxiety Sensitivity Index were used in the study to collect data. The data obtained through the study was analyzed with structural equation modeling. As a result of the study, it was determined that there is a significant relationship between obsessive Compulsive Disorder (OCD) and anxiety sensitivity. Anxiety sensitivity has direct and indirect meaningful effects on the latent variable of OCD in the sub-dimensions of doubting-checking, obsessing, hoarding, washing, ordering, and mental neutralizing, and also anxiety sensitivity is a significant predictor of obsessive compulsive symptoms.

Keywords: obsession, compulsion, structural equation, anxiety sensitivity

Procedia PDF Downloads 541
6795 Software Assessment Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: optimization technique, quality assurance, software certification model, software assessment

Procedia PDF Downloads 488
6794 Portfolio Risk Management Using Quantum Annealing

Authors: Thomas Doutre, Emmanuel De Meric De Bellefon

Abstract:

This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.

Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic

Procedia PDF Downloads 384
6793 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 670
6792 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 286
6791 Improving Fire Resistance of Wood and Wood-Based Composites and Fire Testing Systems

Authors: Nadir Ayrilmis

Abstract:

Wood and wood-based panels are one of the oldest structural materials used in the construction industry due to their significant advantages such as good mechanical properties, low density, renewable material, low-cost, recycling, etc. However, they burn when exposed to a flame source or high temperatures. This is very important when the wood products are used as structural or hemi-structural materials in the construction industry, furniture industry, so on. For this reason, the fire resistance is demanded property for wood products. They can be impregnated with fire retardants to improve their fire resistance. The most used fire retardants, fire-retardant mechanism, and fire-testing systems, and national and international fire-durability classifications and standard requirements for fire-durability of wood and wood-based panels were given in this study.

Keywords: fire resistance, wood-based panels, cone calorimeter, wood

Procedia PDF Downloads 167
6790 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: information retrieval, document relevance, performance measures, personalization

Procedia PDF Downloads 242
6789 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity

Authors: Kavita Bodke

Abstract:

Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.

Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification

Procedia PDF Downloads 39
6788 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company

Authors: Lokendra Kumar Devangan, Ajay Mishra

Abstract:

This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.

Keywords: production planning, mixed integer optimization, network model, network optimization

Procedia PDF Downloads 71
6787 Preparation and Characterization of Nanometric Ni-Zn Ferrite via Different Methods

Authors: Ebtesam. E. Ateia, L. M. Salah, A. H. El-Bassuony

Abstract:

The aim of the presented study was the possibility of developing a nanosized material with enhanced structural properties that was suitable for many applications. Nanostructure ferrite of composition Ni0.5 Zn0.5 Cr0.1 Fe1.9 O4 were prepared by sol–gel, co-precipitation, citrate-gel, flash and oxalate precursor methods. The Structural and micro structural analysis of the investigated samples were carried out. It was observed that the lattice parameter of cubic spinel was constant, and the positions of both tetrahedral and the octahedral bands had a fixed position. The values of the lattice parameter had a significant role in determining the stoichiometric cation distribution of the composition.The average crystalline sizes of the investigated samples were from 16.4 to 69 nm. Discussion was made on the basis of a comparison of average crystallite size of the investigated samples, indicating that the co-precipitation method was the the effective one in producing small crystallite sized samples.

Keywords: chemical preparation, ferrite, grain size, nanocomposites, sol-gel

Procedia PDF Downloads 341
6786 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 118
6784 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade

Procedia PDF Downloads 450