Search results for: causal mediation analysis
27769 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach
Authors: Ju-Young Hwang, Hyo-Gyoung Kwak
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis
Procedia PDF Downloads 41427768 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler
Authors: Syed Ahzam Tariq, Atharva Modi
Abstract:
This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability
Procedia PDF Downloads 12827767 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 27727766 A System Dynamics Model for Analyzing Customer Satisfaction in Healthcare Systems
Authors: Mahdi Bastan, Ali Mohammad Ahmadvand, Fatemeh Soltani Khamsehpour
Abstract:
Health organizations’ sustainable development has nowadays become highly affected by customers’ satisfaction due to significant changes made in the business environment of the healthcare system and emerging of Competitiveness paradigm. In case we look at the hospitals and other health organizations as service providers concerning profit issues, the satisfaction of employees as interior customers, and patients as exterior customers would be of significant importance in health business success. Furthermore, satisfaction rate could be considered in performance assessment of healthcare organizations as a perceived quality measure. Several researches have been carried out in identification of effective factors on patients’ satisfaction in health organizations. However, considering a systemic view, the complex causal relations among many components of healthcare system would be an issue that its acquisition and sustainability requires an understanding of the dynamic complexity, an appropriate cognition of different components, and effective relationships among them resulting ultimately in identifying the generative structure of patients’ satisfaction. Hence, the presenting paper applies system dynamics approaches coherently and methodologically to represent the systemic structure of customers’ satisfaction of a health system involving the constituent components and interactions among them. Then, the results of different policies taken on the system are simulated via developing mathematical models, identifying leverage points, and using scenario making technique and then, the best solutions are presented to improve customers’ satisfaction of the services. The presenting approach supports taking advantage of decision support systems. Additionally, relying on understanding of system behavior Dynamics, the effective policies for improving the health system would be recognized.Keywords: customer satisfaction, healthcare, scenario, simulation, system dynamics
Procedia PDF Downloads 41627765 Familial Exome Sequencing to Decipher the Complex Genetic Basis of Holoprosencephaly
Authors: Artem Kim, Clara Savary, Christele Dubourg, Wilfrid Carre, Houda Hamdi-Roze, Valerie Dupé, Sylvie Odent, Marie De Tayrac, Veronique David
Abstract:
Holoprosencephaly (HPE) is a rare congenital brain malformation resulting from the incomplete separation of the two cerebral hemispheres. It is characterized by a wide phenotypic spectrum and a high degree of locus heterogeneity. Genetic defects in 16 genes have already been implicated in HPE, but account for only 30% of cases, suggesting that a large part of genetic factors remains to be discovered. HPE has been recently redefined as a complex multigenic disorder, requiring the joint effect of multiple mutational events in genes belonging to one or several developmental pathways. The onset of HPE may result from accumulation of the effects of multiple rare variants in functionally-related genes, each conferring a moderate increase in the risk of HPE onset. In order to decipher the genetic basis of HPE, unconventional patterns of inheritance involving multiple genetic factors need to be considered. The primary objective of this study was to uncover possible disease causing combinations of multiple rare variants underlying HPE by performing trio-based Whole Exome Sequencing (WES) of familial cases where no molecular diagnosis could be established. 39 families were selected with no fully-penetrant causal mutation in known HPE gene, no chromosomic aberrations/copy number variants and without any implication of environmental factors. As the main challenge was to identify disease-related variants among a large number of nonpathogenic polymorphisms detected by WES classical scheme, a novel variant prioritization approach was established. It combined WES filtering with complementary gene-level approaches: transcriptome-driven (RNA-Seq data) and clinically-driven (public clinical data) strategies. Briefly, a filtering approach was performed to select variants compatible with disease segregation, population frequency and pathogenicity prediction to identify an exhaustive list of rare deleterious variants. The exome search space was then reduced by restricting the analysis to candidate genes identified by either transcriptome-driven strategy (genes sharing highly similar expression patterns with known HPE genes during cerebral development) or clinically-driven strategy (genes associated to phenotypes of interest overlapping with HPE). Deeper analyses of candidate variants were then performed on a family-by-family basis. These included the exploration of clinical information, expression studies, variant characteristics, recurrence of mutated genes and available biological knowledge. A novel bioinformatics pipeline was designed. Applied to the 39 families, this final integrated workflow identified an average of 11 candidate variants per family. Most of candidate variants were inherited from asymptomatic parents suggesting a multigenic inheritance pattern requiring the association of multiple mutational events. The manual analysis highlighted 5 new strong HPE candidate genes showing recurrences in distinct families. Functional validations of these genes are foreseen.Keywords: complex genetic disorder, holoprosencephaly, multiple rare variants, whole exome sequencing
Procedia PDF Downloads 20427764 Perception of Corporate Social Responsibility and Enhancing Compassion at Work through Sense of Meaningfulness
Authors: Nikeshala Weerasekara, Roshan Ajward
Abstract:
Contemporary business environment, given the circumstance of stringent scrutiny toward corporate behavior, organizations are under pressure to develop and implement solid overarching Corporate Social Responsibility (CSR) strategies. In that milieu, in order to differentiate themselves from competitors and maintain stakeholder confidence banks spend millions of dollars on CSR programmes. However, knowledge on how non-western bank employees perceive such activities is inconclusive. At the same time recently only researchers have shifted their focus on positive effects of compassion at work or the organizational conditions under which it arises. Nevertheless, mediation mechanisms between CSR and compassion at work have not been adequately examined leaving a vacuum to be explored. Despite finding a purpose in work that is greater than extrinsic outcomes of the work is important to employees, meaningful work has not been examined adequately. Thus, in addition to examining the direct relationship between CSR and compassion at work, this study examined the mediating capability of meaningful work between these variables. Specifically, the researcher explored how CSR enables employees to sense work as meaningful which in turn would enhance their level of compassion at work. Hypotheses were developed to examine the direct relationship between CSR and compassion at work and the mediating effect of meaningful work on the relationship between CSR and compassion at work. Both Social Identity Theory (SIT) and Social Exchange Theory (SET) were used to theoretically support the relationships. The sample comprised of 450 respondents covering different levels of the bank. A convenience sampling strategy was used to secure responses from 13 local licensed commercial banks in Sri Lanka. Data was collected using a structured questionnaire which was developed based on a comprehensive review of literature and refined using both expert opinions and a pilot survey. Structural equation modeling using Smart Partial Least Square (PLS) was utilized for data analysis. Findings indicate a positive and significant (p < .05) relationship between CSR and compassion at work. Also, it was found that meaningful work partially mediates the relationship between CSR and compassion at work. As per the findings it is concluded that bank employees’ perception of CSR engagement not only directly influence compassion at work but also impact such through meaningful work as well. This implies that employees consider working for a socially responsible bank since it creates greater meaningfulness of work to retain with the organization, which in turn trigger higher level of compassion at work. By utilizing both SIT and SET in explaining relationships between CSR and compassion at work it amounts to theoretical significance of the study. Enhance existing literature on CSR and compassion at work. Also, adds insights on mediating capability of psychologically related variables such as meaningful work. This study is expected to have significant policy implications in terms of increasing compassion at work where managers must understand the importance of including CSR activities into their strategy in order to thrive. Finally, it provides evidence of suitability of using Smart PLS to test models with mediating relationships involving non normal data.Keywords: compassion at work, corporate social responsibility, employee commitment, meaningful work, positive affect
Procedia PDF Downloads 12927763 Geographical Parthenogenesis in Plants
Authors: Elvira Hörandl
Abstract:
The term “Geographical parthenogenesis” describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives and tend to colonize previously glaciated areas. Several case studies in flowering plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Previous authors regarded predominant polyploidy in asexual (apomictic) plants as the main factor. However, the geographical pattern is not the rule for sexual polyploids. Recent research confirmed a previous hypothesis of the author that a combination of factors is acting: Although uniparental reproduction provides better colonization abilities, it is most efficient in combination with polyploidy. I will present results on case studies in the genus Ranunculus of both autopolyploid and allopolyploid species and species complexes reproducing via facultative apomixis. Polyploidy seems to contribute mainly to a better tolerance of colder climates and temperate extremes, whereby epigenetic flexibility, changes in gene expression, and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Phylogenomic studies entangle complex hybrid origins of asexual taxa, which increases intragenomic heterozygosity of asexual plants. Interestingly, our results suggest an association of sexuality with abiotic stresses, specifically with light stress, which might explain that still, most plants in high altitudes and in southern areas retain sexual reproduction despite other climatic conditions that would favor apomictic plants. We conclude that geographical parthenogenesis results from the complex interplay of the genomic constitution, mode of reproduction and environmental factors.Keywords: apomixis, polyploidy, hybridization, abiotic stress, epigenetics, phylogenomics
Procedia PDF Downloads 7627762 An Exploration of Cross-culture Consumer Behaviour - The Characteristics of Chinese Consumers’ Decision Making in Europe
Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu
Abstract:
This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted twenty-four in-depth interviews. Grounded theory models are developed to link the causal conditions, process and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence on internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.Keywords: national culture, consumer behaviour, decision making, cultural marketing
Procedia PDF Downloads 9427761 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 45827760 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China
Authors: Guanghua Lu, Zhenhua Yan
Abstract:
To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake
Procedia PDF Downloads 27727759 A Critical Genre Analysis of Negative Parts in CSR Reports
Authors: Shuai Liu
Abstract:
In corporate social responsibility (CSR) reporting, companies are expected to present both the positive and negative parts of the social and environmental impacts of their performance. This study investigates how the companies that listed in fortune 500 respond to this challenge by analyzing the representations of negative part especially the safety performance. It has found that in the level of genre analysis, it presented 3 major moves and 11 steps in terms of the interdiscursivity analysis. It was made up of three dominant discourse.. The study calls for greater focus on the internal and external analysis of the negative aspect of aspects of companies’ self-disclosure.Keywords: CSR reports, negative parts, critical genre analysis, interdiscursivity
Procedia PDF Downloads 43127758 Child Sexual Abuse Prevention: Evaluation of the Program “Sharing Mouth to Mouth: My Body, Nobody Can Touch It”
Authors: Faride Peña, Teresita Castillo, Concepción Campo
Abstract:
Sexual violence, and particularly child sexual abuse, is a serious problem all over the world, México included. Given its importance, there are several preventive and care programs done by the government and the civil society all over the country but most of them are developed in urban areas even though these problems are especially serious in rural areas. Yucatán, a state in southern México, occupies one of the first places in child sexual abuse. Considering the above, the University Unit of Clinical Research and Victimological Attention (UNIVICT) of the Autonomous University of Yucatan, designed, implemented and is currently evaluating the program named “Sharing Mouth to Mouth: My Body, Nobody Can Touch It”, a program to prevent child sexual abuse in rural communities of Yucatán, México. Its aim was to develop skills for the detection of risk situations, providing protection strategies and mechanisms for prevention through culturally relevant psycho-educative strategies to increase personal resources in children, in collaboration with parents, teachers, police and municipal authorities. The diagnosis identified that a particularly vulnerable population were children between 4 and 10 years. The program run during 2015 in primary schools in the municipality whose inhabitants are mostly Mayan. The aim of this paper is to present its evaluation in terms of its effectiveness and efficiency. This evaluation included documental analysis of the work done in the field, psycho-educational and recreational activities with children, evaluation of knowledge by participating children and interviews with parents and teachers. The results show high efficiency in fulfilling the tasks and achieving primary objectives. The efficiency shows satisfactory results but also opportunity areas that can be resolved with minor adjustments to the program. The results also show the importance of including culturally relevant strategies and activities otherwise it minimizes possible achievements. Another highlight is the importance of participatory action research in preventive approaches to child sexual abuse since by becoming aware of the importance of the subject people participate more actively; in addition to design culturally appropriate strategies and measures so that the proposal may not be distant to the people. Discussion emphasizes the methodological implications of prevention programs (convenience of using participatory action research (PAR), importance of monitoring and mediation during implementation, developing detection skills tools in creative ways using psycho-educational interactive techniques and working assessment issued by the participants themselves). As well, it is important to consider the holistic character this type of program should have, in terms of incorporating social and culturally relevant characteristics, according to the community individuality and uniqueness, consider type of communication to be used and children’ language skills considering that there should be variations strongly linked to a specific cultural context.Keywords: child sexual abuse, evaluation, PAR, prevention
Procedia PDF Downloads 29527757 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis
Authors: Quan Gu, Daniel Dimitrov
Abstract:
BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics
Procedia PDF Downloads 20527756 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 37227755 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014
Authors: Alexiou Dimitra, Fragkaki Maria
Abstract:
The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics
Procedia PDF Downloads 51327754 The Establishment of Probabilistic Risk Assessment Analysis Methodology for Dry Storage Concrete Casks Using SAPHIRE 8
Authors: J. R. Wang, W. Y. Cheng, J. S. Yeh, S. W. Chen, Y. M. Ferng, J. H. Yang, W. S. Hsu, C. Shih
Abstract:
To understand the risk for dry storage concrete casks in the cask loading, transfer, and storage phase, the purpose of this research is to establish the probabilistic risk assessment (PRA) analysis methodology for dry storage concrete casks by using SAPHIRE 8 code. This analysis methodology is used to perform the study of Taiwan nuclear power plants (NPPs) dry storage system. The process of research has three steps. First, the data of the concrete casks and Taiwan NPPs are collected. Second, the PRA analysis methodology is developed by using SAPHIRE 8. Third, the PRA analysis is performed by using this methodology. According to the analysis results, the maximum risk is the multipurpose canister (MPC) drop case.Keywords: PRA, dry storage, concrete cask, SAPHIRE
Procedia PDF Downloads 21627753 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms
Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan
Abstract:
Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity
Procedia PDF Downloads 25727752 Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development
Authors: Jeong-Hyun Park, Young-Sik Park, Hyo-Teag Jung
Abstract:
This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products.Keywords: static analysis, code quality, coding rules, automation tool
Procedia PDF Downloads 52127751 Light, Restorativeness and Performance in the Workplace: A Pilot Study
Authors: D. Scarpanti, M. Brondino, M. Pasini
Abstract:
Background: the present study explores the role of light and restorativeness on work. According with the Attention Restoration Theory (ART) and a Model of Work Environment, the main idea is that some features of environment, i.e., lighting, influences the direct attention, and so, the performance. Restorativeness refers to the presence/absence level of all the characteristics of physical environment that help to regenerate direct attention. Specifically, lighting can affect level of fascination and attention in one hand; and in other hand promotes several biological functions via pineal gland. Different reviews on this topic show controversial results. In order to bring light on this topic, the hypotheses of this study are that lighting can affect the construct of restorativeness and, in the second time, the restorativeness can affect the performance. Method: the participants are 30 workers of a mechatronic company in the North Italy. Every subject answered to a questionnaire valuing their subjective perceptions of environment in a different way: some objective features of environment, like lighting, temperature and air quality; some subjective perceptions of this environment; finally, the participants answered about their perceived performance. The main attention is on the features of light and his components: visual comfort, general preferences and pleasantness; and the dimensions of the construct of restorativeness; fascination, coherence and being away. The construct of performance per se is conceptualized in three level: individual, team membership and organizational membership; and in three different components: proficiency, adaptability, and proactivity, for a total of 9 subcomponents. Findings: path analysis showed that some characteristics of lighting respectively affected the dimension of fascination; and, as expected, the dimension of fascination affected work performance. Conclusions: The present study is a first pilot step of a wide research. These first results can be summarized with the statement that lighting and restorativeness contribute to explain work performance variability: in details perceptions of visual comfort, satisfaction and pleasantness, and fascination respectively. Results related to fascination are particularly interesting because fascination is conceptualized as the opposite of the construct of direct attention. The main idea is, in order to regenerate attentional capacity, it’s necessary to provide a lacking of attention (fascination). The sample size did not permit to test simultaneously the role of the perceived characteristics of light to see how they differently contribute to predict fascination of the work environment. However, the results highlighted the important role that light could have in predicting restorativeness dimensions and probably with a larger sample we could find larger effects also on work performance. Furthermore, longitudinal data will contribute to better analyze the causal model along time. Applicative implications: the present pilot study highlights the relevant role of lighting and perceived restorativeness in the work environment and the importance to focus attention on light features and the restorative characteristics in the design of work environments.Keywords: lighting, performance, restorativeness, workplace
Procedia PDF Downloads 15627750 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 36927749 Financial Analysis of Selected Private Healthcare Organizations with Special Referance to Guwahati City, Assam
Authors: Mrigakshi Das
Abstract:
The private sector investments and quantum of money required in this sector critically hinges on the financial risk and returns the sector offers to providers of capital. Therefore, it becomes important to understand financial performance of hospitals. Financial Analysis is useful for decision makers in a variety of settings. Consider the small proprietary hospitals, say, Physicians Clinic. The managers of such clinic need the information that financial statements provide. Attention to Financial Statements of healthcare Organizations can provide answers to questions like: How are they doing? What is their rate of profit? What is their solvency and liquidity position? What are their sources and application of funds? What is their Operational Efficiency? The researcher has studied Financial Statements of 5 Private Healthcare Organizations in Guwahati City.Keywords: not-for-profit organizations, financial analysis, ratio analysis, profitability analysis, liquidity analysis, operational efficiency, capital structure analysis
Procedia PDF Downloads 55027748 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian
Authors: D. Beziakina, E. Bulgakova
Abstract:
This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.Keywords: speech analysis, statistical analysis, speaker recognition, identification of person
Procedia PDF Downloads 47227747 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing
Procedia PDF Downloads 16427746 Tax Criminal Case Settlement Through Obligative Justice Approach to Increase the State Revenue
Authors: Pujiyono, Reda Manthovani, Deny Tri Ardianto, Rabani Halawa, Isharyanto
Abstract:
This research has background that the taxpayer (defendant) who has paid off the tax payable and the tax penalty payable after the tax case file has been transferred to the court, while the legality of stopping the prosecution of tax cases on the grounds that in the interest of state revenue is not regulated in the provisions of Law Number 8 of 1981 concerning The Criminal Procedure Code and Law Number 28 of 2007 concerning the Third Amendment to Law Number 6 of 1983 concerning General Provisions and Tax Procedures as amended several times, most recently by Law Number 16 of 2009 concerning Stipulation of Government Regulation in Lieu of Law Number 5 of 2008 concerning Fourth Amendment to Law Number 6 0f 1983 concerning General Provisions and Tax Procedures to become Law, even though at the investigation stage it regulates the mechanism for stopping the investigation for the sake of the interest of acceptance ne this is because before the case file is transferred to the court where at the request of the Minister of Finance of The Republic of Indonesia can stop the investigation in the interest of state revenue so that based on this phenomenon a legal vacuum is found. Therefore, a non-penal policy is needed from the public prosecutor to resolve tax crime cases without going through litigation in court through the penal mediation method using the Plea Bargaining System which adheres to the principles of restorative justice and obligative justice based on the ultimum remedium principle and the principle of opportunity in order to realize the principle of fast, simple and low cost justice (content principle). This research is a normative legal research, using a statutory approach, conceptual approach, and comparative law approach. Regulations that is used in many countries, include America, The Netherlands and Singapore. The results of this study indicate that there is a reformulation of the tax criminal justice system which regulates the mechanism, qualifications and authority to terminate the prosecution of tax cases in the interest of state revenues in order to achieve legal goals which are not only for legal certainty but more that, namely providing benefits and legal justice for people seeking justice.Keywords: obligative justice, regulation, state reveneus, tax criminal
Procedia PDF Downloads 8527745 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13427744 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 13927743 Free Will and Compatibilism in Decision Theory: A Solution to Newcomb’s Paradox
Authors: Sally Heyeon Hwang
Abstract:
Within decision theory, there are normative principles that dictate how one should act in addition to empirical theories of actual behavior. As a normative guide to one’s actual behavior, evidential or causal decision-theoretic equations allow one to identify outcomes with maximal utility values. The choice that each person makes, however, will, of course, differ according to varying assignments of weight and probability values. Regarding these different choices, it remains a subject of considerable philosophical controversy whether individual subjects have the capacity to exercise free will with respect to the assignment of probabilities, or whether instead the assignment is in some way constrained. A version of this question is given a precise form in Richard Jeffrey’s assumption that free will is necessary for Newcomb’s paradox to count as a decision problem. This paper will argue, against Jeffrey, that decision theory does not require the assumption of libertarian freedom. One of the hallmarks of decision-making is its application across a wide variety of contexts; the implications of a background assumption of free will is similarly varied. One constant across the contexts of decision is that there are always at least two levels of choice for a given agent, depending on the degree of prior constraint. Within the context of Newcomb’s problem, when the predictor is attempting to guess the choice the agent will make, he or she is analyzing the determined aspects of the agent such as past characteristics, experiences, and knowledge. On the other hand, as David Lewis’ backtracking argument concerning the relationship between past and present events brings to light, there are similarly varied ways in which the past can actually be dependent on the present. One implication of this argument is that even in deterministic settings, an agent can have more free will than it may seem. This paper will thus argue against the view that a stable background assumption of free will or determinism in decision theory is necessary, arguing instead for a compatibilist decision theory yielding a novel treatment of Newcomb’s problem.Keywords: decision theory, compatibilism, free will, Newcomb’s problem
Procedia PDF Downloads 32227742 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 53527741 Accelerating Malaysian Technology Startups: Case Study of Malaysian Technology Development Corporation as the Innovator
Authors: Norhalim Yunus, Mohamad Husaini Dahalan, Nor Halina Ghazali
Abstract:
Building technology start-ups from ground zero into world-class companies in form and substance present a rare opportunity for government-affiliated institutions in Malaysia. The challenge of building such start-ups becomes tougher when their core businesses involve commercialization of unproven technologies for the mass market. These simple truths, while difficult to execute, will go a long way in getting a business off the ground and flying high. Malaysian Technology Development Corporation (MTDC), a company founded to facilitate the commercial exploitation of R&D findings from research institutions and universities, and eventually help translate these findings of applications in the marketplace, is an excellent case in point. The purpose of this paper is to examine MTDC as an institution as it explores the concept of ‘it takes a village to raise a child’ in an effort to create and nurture start-ups into established world class Malaysian technology companies. With MTDC at the centre of Malaysia's innovative start-ups, the analysis seeks to specifically answer two questions: How has the concept been applied in MTDC? and what can we learn from this successful case? A key aim is to elucidate how MTDC's journey as a private limited company can help leverage reforms and achieve transformation, a process that might be suitable for other small, open, third world and developing countries. This paper employs a single case study, designed to acquire an in-depth understanding of how MTDC has developed and grown technology start-ups to world-class technology companies. The case study methodology is employed as the focus is on a contemporary phenomenon within a real business context. It also explains the causal links in real-life situations where a single survey or experiment is unable to unearth. The findings show that MTDC maximises the concept of it needs a village to raise a child in totality, as MTDC itself assumes the role of the innovator to 'raise' start-up companies into world-class stature. As the innovator, MTDC creates shared value and leadership, introduces innovative programmes ahead of the curve, mobilises talents for optimum results and aggregates knowledge for personnel advancement. The success of the company's effort is attributed largely to leadership, visionary, adaptability, commitment to innovate, partnership and networking, and entrepreneurial drive. The findings of this paper are however limited by the single case study of MTDC. Future research is required to study more cases of success or/and failure where the concept of it takes a village to raise a child have been explored and applied.Keywords: start-ups, technology transfer, commercialization, technology incubator
Procedia PDF Downloads 15127740 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant
Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang
Abstract:
In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR
Procedia PDF Downloads 465