Search results for: big data markets
25197 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 19525196 International Tourists’ Travel Motivation by Push-Pull Factors and Decision Making for Selecting Thailand as Destination Choice
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.Keywords: decision making, destination choice, international tourist, pull factor, push factor, Thailand, travel motivation
Procedia PDF Downloads 39325195 An Institutional Analysis of IFRS Adoption in Poor Jurisdictions
Authors: Catalina Florentina Pricope
Abstract:
The last two decades witnessed a movement towards harmonization of international financial reporting standards (IFRS) throughout the global economy. This investigation seeks to identify the factors that could explain the adoption of IFRS by poor jurisdictions. While there has been a considerable amount, of literature published on the effects and key drivers of IFRS adoption in both developed and developing countries, little attention has been paid to jurisdictions with less developed capital markets and low-income levels exclusively. Drawing upon the Institutional Isomorphism theory and analyzing a sample of 45 poor jurisdictions between 2008 and 2013, the study empirically shows that poor jurisdictions are driven by legitimacy concerns rather than by economic reasoning to adopt an international accounting perspective. This in turn has implications for the IASB, as it should seek to influence institutional pressures within a particular jurisdiction in order to promote IFRS adoption.Keywords: IFRS adoption, isomorphism, poor jurisdictions, accounting harmonization
Procedia PDF Downloads 27725194 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4425193 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm
Authors: Jan Busch, Peter Nyhuis
Abstract:
Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation
Procedia PDF Downloads 57725192 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6825191 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41225190 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25825189 Application of a Compact Wastewater Treatment Unit in a Rural Area
Authors: Mohamed El-Khateeb
Abstract:
Encompassing inventory, warehousing, and transportation management, logistics is a crucial predictor of firm performance. This has been extensively proven by extant literature in business and operations management. Logistics is also a fundamental determinant of a country's ability to access international markets. Available studies in international and transport economics have shown that limited transport infrastructure and underperforming transport services can severely affect international competitiveness. However, the evidence lacks the overall impact of logistics performance-encompassing all inventory, warehousing, and transport components- on global trade. In order to fill this knowledge gap, the paper uses a gravitational trade model with 155 countries from all geographical regions between 2007 and 2018. Data on logistics performance is obtained from the World Bank's Logistics Performance Index (LPI). First, the relationship between logistics performance and a country’s total trade is estimated, followed by a breakdown by the economic sector. Then, the analysis is disaggregated according to the level of technological intensity of traded goods. Finally, after evaluating the intensive margin of trade, the relevance of logistics infrastructure and services for the extensive trade margin is assessed. Results suggest that: (i) improvements in both logistics infrastructure and services are associated with export growth; (ii) manufactured goods can significantly benefit from these improvements, especially when both exporting and importing countries increase their logistics performance; (iii) the quality of logistics infrastructure and services becomes more important as traded goods are technology-intensive; and (iv) improving the exporting country's logistics performance is essential in the intensive margin of trade while enhancing the importing country's logistics performance is more relevant in the extensive margin.Keywords: low-cost, recycling, reuse, solid waste, wastewater treatment
Procedia PDF Downloads 19725188 Enhancing Technical Trading Strategy on the Bitcoin Market using News Headlines and Language Models
Authors: Mohammad Hosein Panahi, Naser Yazdani
Abstract:
we present a technical trading strategy that leverages the FinBERT language model and financial news analysis with a focus on news related to a subset of Nasdaq 100 stocks. Our approach surpasses the baseline Range Break-out strategy in the Bitcoin market, yielding a remarkable 24.8% increase in the win ratio for all Friday trades and an impressive 48.9% surge in short trades specifically on Fridays. Moreover, we conduct rigorous hypothesis testing to establish the statistical significance of these improvements. Our findings underscore considerable potential of our NLP-driven approach in enhancing trading strategies and achieving greater profitability within financial markets.Keywords: quantitative finance, technical analysis, bitcoin market, NLP, language models, FinBERT, technical trading
Procedia PDF Downloads 7525187 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13525186 Ethereum Based Smart Contracts for Trade and Finance
Authors: Rishabh Garg
Abstract:
Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, owing to their higher banking risks and bigger presence of digital financing, are looking forward to technology-driven solutions, financial inclusion and innovative working paradigms. Blockchain has the potential to enhance transaction transparency and supply chain traceability. It has captured a vast landscape with 200 million crypto users worldwide. Fintech and blockchain products are popping up across brokerage, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure, and base protocols.Keywords: blockchain, distributed ledger technology, decentralized applications, ethereum, smart contracts, trade finance
Procedia PDF Downloads 15525185 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region
Authors: Monica Plechero
Abstract:
Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region
Procedia PDF Downloads 23025184 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13625183 The Agile Management and Its Relationship to Administrative Ambidexterity: An Applied Study in Alexandria Library
Authors: Samar Sheikhelsouk, Dina Abdel Qader, Nada Rizk
Abstract:
The plan of the organization may impede its progress and creativity, especially in the framework of its work in independent environments and fast-shifting markets, unless the leaders and minds of the organization use a set of practices, tools, and techniques encapsulated in so-called “agile methods” or “lightweight” methods. Thus, this research paper examines the agile management approach as a flexible and dynamic approach and its relationship to the administrative ambidexterity at the Alexandria library. The sample of the study is the employees of the Alexandria library. The study is expected to provide both theoretical and practical implications. The current study will bridge the gap between agile management and administrative approaches in the literature. The study will lead managers to comprehend how the role of agile management in establishing administrative ambidexterity in the organization.Keywords: agile management, administrative innovation, Alexandria library, Egypt
Procedia PDF Downloads 8525182 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 15625181 A Comparative Synopsis of the Enforcement of Market Abuse Prohibition in Australia and South Africa
Authors: Howard Chitimira
Abstract:
In Australia, the market abuse prohibition is generally well accepted by the investing and non-investing public as well as by the government. This co-operative and co-ordinated approach on the part of all the relevant stakeholders has to date given rise to an increased awareness and commendable combating of market abuse activities in the Australian corporations, companies, and securities markets. It is against this background that this article seeks to comparatively explore the general enforcement approaches that are employed to combat market abuse (insider trading and market manipulation) activity in Australia and South Africa. In relation to this, the role of selected enforcement authorities and possible enforcement methods which may be learnt from both the Australian and South African experiences will be isolated where necessary for consideration by such authorities, especially, in the South African market abuse regulatory framework.Keywords: insider trading, market abuse, market manipulation, regulation
Procedia PDF Downloads 30725180 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43725179 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9425178 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 16025177 Urban Livelihoods and Climate Change: Adaptation Strategies for Urban Poor in Douala, Cameroon
Authors: Agbortoko Manyigbe Ayuk Nkem, Eno Cynthia Osuh
Abstract:
This paper sets to examine the relationship between climate change and urban livelihood through a vulnerability assessment of the urban poor in Douala. Urban development in Douala places priority towards industrial and city-centre development with little focus on the urban poor in terms of housing units and areas of sustenance. With the high rate of urbanisation and increased land prices, the urban poor are forced to occupy marginal lands which are mainly wetlands, wastelands and along abandoned neighbourhoods prone to natural hazards. Due to climate change and its effects, these wetlands are constantly flooded thereby destroying homes, properties, and crops. Also, most of these urban dwellers have found solace in urban agriculture as a means for survival. However, since agriculture in tropical regions like Cameroon depends largely on seasonal rainfall, the changes in rainfall pattern has led to misplaced periods for crop planting and a huge wastage of resources as rainfall becomes very unreliable with increased temperature levels. Data for the study was obtained from both primary and secondary sources. Secondary sources included published materials related to climate change and vulnerability. Primary data was obtained through focus-group discussions with some urban farmers while a stratified sampling of residents within marginal lands was done. Each stratum was randomly sampled to obtain information on different stressors related to climate change and their effect on livelihood. Findings proved that the high rate of rural-urban migration into Douala has led to increased prevalence of the urban poor and their vulnerability to climate change as evident in their constant fight against flood from unexpected sea level rise and irregular rainfall pattern for urban agriculture. The study also proved that women were most vulnerable as they depended solely on urban agriculture and its related activities like retailing agricultural products in different urban markets which to them serves as a main source of income in the attainment of basic needs for the family. Adaptation measures include the constant use of sand bags, raised makeshifts as well as cultivation along streams, planting after evidence of constant rainfall has become paramount for sustainability.Keywords: adaptation, Douala, Cameroon, climate change, development, livelihood, vulnerability
Procedia PDF Downloads 29325176 The Curse of Natural Resources: An Empirical Analysis Applied to the Case of Copper Mining in Zambia
Authors: Chomba Kalunga
Abstract:
Many developing countries have a rich endowment of natural resources. Yet, amidst that wealth, living standards remain poor. At the same time, international markets have been surged with an increase in copper prices in the last twenty years. This is a presentation of the findings on the causal economic impact of Zambia’s copper mines, a country located in sub-Saharan Africa endowed with vast copper deposits on living standards using household data from 1996 to 2010, exploiting an episode where the copper prices on the international market were rising. Using an Instrumental Variable approach and controlling for constituency-level and microeconomic factors, the results show a significant impact of copper production on living standards. After splitting the constituencies close to and far away from the nearest mine, the results document that constituencies close to the mines benefited significantly from the increase in copper production, compared to their counterparts through increased levels of employment. Finally, the results are not consistent with the natural resource curse hypothesis; findings show a positive causal relationship between the presence of natural resources and socioeconomic outcomes in less developed countries, particularly for constituencies close to the mines in Zambia. Some key policy implications follow from the findings. The finding that increased copper production led to an increase in employment suggests that, in Zambias’ context, policies that promote local employment may be more beneficial to residents. Meaning that it is government policies that can help improve the living standards were government needs to work towards making this impact more substantial.Keywords: copper prices, local development, mining, natural resources
Procedia PDF Downloads 21025175 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59425174 Sustainability as a Platform in Microfinance Industry for Developing Countries
Authors: Nor Azlina Ab.Rahman, Salwana Hassan, Zuraeda Ibrahim, Normah Omar, Jamaliah Said
Abstract:
Revolution in the business environment has crucial growing changes on most globalized markets. Numerous of organizations are necessitating towards producing more proactive entrepreneurs with a dynamic teams, who can run and steer their business to victory. Revolutionizing on business strategy and entrepreneurial skills, also implementing innovation and practices to enhance its performance is necessary for these organizations to be more cost-efficient and increase their efficiency. The study aims to clarify issues of whether measurement has a positive effect on different aspects of innovation and best practices. The study contributes to the current understanding in three ways; first by presenting the important aspects of organizational innovation and best practices. Second by showing the importance of measurement in promoting different aspects of innovation and best practices. Third is to examine the link between innovation, best practices and sustainability in microfinance. The study has been executed by conducting a qualitative study toward the microfinance industry. A representative of management and employees in each company was selected through an invitation to participate in getting information for data collection purpose in the study. The study contains a comprehensive description of the impacts of measurement on different aspects of innovation and best practices towards sustainability in both microfinance industries and SMEs. Findings from this study shows that performance measurement has positive effects on issues related to innovation and best practices. The measurement for several aspects of innovation and best practices is good potential in microfinance industries. Additionally, measurement on innovation and best practices shows a positively related with each other to enhance organization performance. The study suggests that both academics and practitioners should focus on the development of new methods and practices to describe and scrutinize further understanding for measuring issues which is related to innovation and best practices, in order to better develop innovation and best practices towards sustainability. This effort would not only contribute to firm’s success, but also toward the development of the nation in the developing countries.Keywords: best practices, innovation, microfinance, sustainability
Procedia PDF Downloads 52225173 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35525172 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 18925171 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24625170 Employment Mobility and the Effects of Wage Level and Tenure
Authors: Idit Kalisher, Israel Luski
Abstract:
One result of the growing dynamicity of labor markets in recent decades is a wider scope of employment mobility – i.e., transitions between employers, either within or between careers. Employment mobility decisions are primarily affected by the current employment status of the worker, which is reflected in wage and tenure. Using 34,328 observations from the National Longitudinal Survey of Youth 1979 (NLS79), which were derived from the USA population between 1990 and 2012, this paper aims to investigate the effects of wage and tenure over employment mobility choices, and additionally to examine the effects of other personal characteristics, individual labor market characteristics and macroeconomic factors. The estimation strategy was designed to address two challenges that arise from the combination of the model and the data: (a) endogeneity of the wage and the tenure in the choice equation; and (b) unobserved heterogeneity, as the data of this research is longitudinal. To address (a), estimation was performed using two-stage limited dependent variable procedure (2SLDV); and to address (b), the second stage was estimated using femlogit – an implementation of the multinomial logit model with fixed effects. Among workers who have experienced at least one turnover, the wage was found to have a main effect on career turnover likelihood of all workers, whereas the wage effect on job turnover likelihood was found to be dependent on individual characteristics. The wage was found to negatively affect the turnover likelihood and the effect was found to vary across wage level: high-wage workers were more affected compared to low-wage workers. Tenure was found to have a main positive effect on both turnover types’ likelihoods, though the effect was moderated by the wage. The findings also reveal that as their wage increases, women are more likely to turnover than men, and academically educated workers are more likely to turnover within careers. Minorities were found to be as likely as Caucasians to turnover post wage-increase, but less likely to turnover with each additional tenure year. The wage and the tenure effects were found to vary also between careers. The difference in attitude towards money, labor market opportunities and risk aversion could explain these findings. Additionally, the likelihood of a turnover was found to be affected by previous unemployment spells, age, and other labor market and personal characteristics. The results of this research could assist policymakers as well as business owners and employers. The former may be able to encourage women and older workers’ employment by considering the effects of gender and age on the probability of a turnover, and the latter may be able to assess their employees’ likelihood of a turnover by considering the effects of their personal characteristics.Keywords: employment mobility, endogeneity, femlogit, turnover
Procedia PDF Downloads 15225169 The Shannon Entropy and Multifractional Markets
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes
Procedia PDF Downloads 11025168 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 143