Search results for: Privacy Preservation in Data Mining (PPDM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26145

Search results for: Privacy Preservation in Data Mining (PPDM)

25575 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project

Authors: David L. Knott, Robert Kingsland, Alistair Hitchon

Abstract:

The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.

Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam

Procedia PDF Downloads 313
25574 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 186
25573 “Context” Thinking of Contemporary Urban History Space under the Basis of Enlightenment of Chinese Traditional Cultural Philology: Taking West Expansion Plan of Tianyi Pavilion as An Example

Authors: Wei Yan, Wei Dong

Abstract:

Facing the understanding problem of update and preservation of urban history space under background of rapid Chinese urbanization, so at first there is a need to dig the philosophic principles of “antithesis” and “unification” which are contained in the traditional Chinese literature known as “antithesis” and do the job of planning translation by personal understanding in order to form understanding and value systems of dialectical urban history space under the foundation of “antithesis”. Then we could put forward a “context” concept for urban history space under the foregoing basis. After that, we will take the update and preservation of Ningbo Tianyi Pavilion’s historical district as an example to discuss problems related to understanding of urban history area under the basis of Chinese tradition culture, improvement of value system, construction of urban trait space and Chinese “localization” of planning theory.

Keywords: antithesis, traditional values, city renewal and conservation, the “context” of city history space

Procedia PDF Downloads 447
25572 Mining in Peru and Local Governance: Assessing the Contribution of CRS Projects

Authors: Sandra Carrillo Hoyos

Abstract:

Mining activities in South America have significantly grown during the last decades, given the abundance of natural resources, the implemented governmental policies to incentivize foreign investment as well as the boom in international prices for metals and oil between 2002 and 2008. While this context allowed the region to occupy a leading position between the top producers of minerals around the world, it has also meant an increase in socio-environmental conflicts which have generated costs and negative impacts not only for the companies but especially for the governments and local communities.During the latest decade, the mining sector in Peru has faced with the social resistance of a large number of communities, which began organizing actions against the implementation of high investing projects. The dissatisfaction has derived in the prevalence of socio-environmental conflicts associated with mining activities, some of them never solved into an agreement. In order to prevent those socio-environmental conflicts and obtain the social license from local communities, most of the mining companies have developed diverse initiatives within the framework of policies and practices of corporate social responsibility (CSR). This paper has assessed the mining sector’s contribution toward the local development management along the last decade, as part of CSR strategies as well as the policies promoted by the Peruvian State. This assessment found that, in the beginning, these initiatives have been based on a philanthropic approach and were reacting to pressures from local stakeholders to maintain the consent to operate from the surrounding communities as well as to create, as a result, a harmonious atmosphere for operations. Due to the weak State presence, such practices have increased the expectations of communities related to the participation of mining companies in solving structural development problems, especially those related to primary needs, infrastructure, education, health, among others. In other words, this paper was focused on analyze in what extent these initiatives have promoted local empowerment for development planning and integrated management of natural resources from a territorial approach. From this perspective, the analysis demonstrates that, while the design and planning of social investment initiatives have improved due to the sector´s sustainability approach, many companies have developed actions beyond their competence during this process. In some cases, the referenced actions have generated dependency with communities, even though this relationship has not exempted the companies of conflict situations with unfortunate consequences. Furthermore, the social programs developed have not necessarily generated a significant impact in improving the quality of life of affected populations. In fact, it is possible to identify that those regions with high mining resources and investment are facing with a situation of poverty and high dependency on mining production. In spite of the revenues derived from mining industry, local governments have not been able to translate the royalties into sustainable development opportunities. For this reason, the proposed paper suggests some challenges for the mining sector contribution to local development based on the best practices and lessons learnt from a benchmarking for the leading mining companies.

Keywords: corporate social responsibility, local development, mining, socio-environmental conflict

Procedia PDF Downloads 402
25571 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.

Keywords: traditional coal mining, heavy metals, pollution indicators, geostatistics, Caspian forest

Procedia PDF Downloads 176
25570 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 451
25569 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 200
25568 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 147
25567 The Role of Technology in Transforming the Finance, Banking, and Insurance Sectors

Authors: Farid Fahami

Abstract:

This article explores the transformative role of technology in the finance, banking, and insurance sectors. It examines key technological trends such as AI, blockchain, data analytics, and digital platforms and their impact on operations, customer experiences, and business models. The article highlights the benefits of technology adoption, including improved efficiency, cost reduction, enhanced customer experiences, and expanded financial inclusion. It also addresses challenges like cybersecurity, data privacy, and the need for upskilling. Real-world case studies demonstrate successful technology integration, and recommendations for stakeholders emphasize embracing innovation and collaboration. The article concludes by emphasizing the importance of technology in shaping the future of these sectors.

Keywords: banking, finance, insurance, technology

Procedia PDF Downloads 71
25566 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 75
25565 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis

Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim

Abstract:

The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.

Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection

Procedia PDF Downloads 406
25564 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 252
25563 Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area

Authors: Maphuti Georgina Kwata

Abstract:

Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions).

Keywords: directional dust deposition gauge, BS part 5 1747 dust deposit gauge, wind rose, wind blowing

Procedia PDF Downloads 503
25562 Educational Fieldworks towards Urban Biodiversity Preservation: Case Study of Japanese Gardens Management of Kanazawa City, Japan

Authors: Aida Mammadova, Juan Pastor Ivars

Abstract:

Japanese gardens can be considered as the unique hubs to preserve urban biodiversity, as they provide the habitat for the diverse network of living organisms, facilitating to the movement of the rare species around the urban landscape, became the refuge for the moss and many endangered species. For the centuries, Japanese gardens were considered as ecologically sustainable and well-organized ecosystems, due to the skilled maintenances and management. However, unfortunately, due to the depopulations and ageing in Japanese societies, gardens are becoming more abandoned, and there is an urgent need to increase the awareness about the importance of the Japanese gardens to preserve the urban biodiversity. In this study, we have conducted the participatory educational field trips for 12 students into the to the five gardens protected by Kanazawa City and learned about the preservation activities conducted at the governmental, municipal, and local levels. After the courses, students have found a strong linkage between the gardens with the traditional culture. Kanazawa City, for more than 400 years is famous with traditional craft makings and tea ceremonies, and it was noticed that the cultural diversity of the city was strongly supported by the biodiversity of the gardens, and loss of the gardens would bring to the loss of the traditional culture. Using the experiential approach during the fieldworks, it was observed by the students that the linkage between the bio-cultural diversity strongly depends on humans’ activities. The continuous management and maintenance of the gardens are the contributing factor for the preservation of urban diversity. However, garden management is very time and capital consuming process, and it was also noticed that there is a big need to attract all levels of the society to preserve the urban biodiversity through the participatory urbanism.

Keywords: biodiversity, conservation, educational fieldwork, Japanese gardens

Procedia PDF Downloads 211
25561 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 189
25560 Shariah Guideline on Value-Based Intermediation Implementation in the Light of Maqasid Shariah Analysis

Authors: Muhammad Izzam Bin Mohd Khazar, Ruqayyah Binti Mohamad Ali, Nurul Atiqah Binti Yusri

Abstract:

Value-based intermediation (VBI) has been introduced by Bank Negara Malaysia (BNM) as the next strategic direction and growth driver for Islamic banking institutions. The aim of VBI is to deliver the intended outcome of Shariah through practices, conducts, and offerings that generate positive and sustainable impact to the economy, community and environment which is aligned to Maqasid Shariah in preserving the common interest of society by preventing harm and maximizing benefit. Hence, upon its implementation, VBI will experiment the current Shariah compliance treatment and revolutionise new policies and systems that can meritoriously entrench and convey the objectives of Shariah. However, discussion revolving VBI in the light of Maqasid analysis is still scarce hence further research needs to be undertaken. The idea of implementation of VBI vision into quantifiable Maqasid Shariah measurement is yet to be explored due to the nature of Maqasid that is variable. The contemporary scholars also have different views on the implementation of VBI. This paper aims to discuss on the importance of Maqasid Shariah in the current Islamic finance transactions by providing Shariah index measurement in the application of VBI. This study also intends to explore basic Shariah guidelines and parameters based on the objectives of Shariah; preservation of the five pillars (religion, life, progeny, intellect and wealth) with further elaboration on preservation of wealth under five headings: rawaj (circulation and marketability); wuduh (transparency); hifz (preservation); thabat (durability and tranquillity); and ‘adl (equity and justice). In alignment with these headings, Islamic finance can be innovated for VBI implementation, particularly in Maybank Islamic being a significant leader in the IFI market.

Keywords: Islamic Financial Institutions, Maqasid Index, Maqasid Shariah, sustainability, value-based intermediation

Procedia PDF Downloads 166
25559 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 294
25558 Heritage Value and Industrial Tourism Potential of the Urals, Russia

Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov

Abstract:

Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.

Keywords: industrial heritage, mining heritage, Central Urals, Russia

Procedia PDF Downloads 135
25557 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
25556 Strategies to Enhance Compliance of Health and Safety Standards at the Selected Mining Industries in Limpopo Province, South Africa: Occupational Health Nurse’s Perspective

Authors: Livhuwani Muthelo

Abstract:

The health and safety of the miners in the South African mining industry are guided by the regulations and standards which are anticipated to promote a healthy work environment and fatalities. It is of utmost importance for the miners to comply with these regulations/standards to protect themselves from potential occupational health and safety risks, accidents, and fatalities. The purpose of this study was to develop and validate strategies to enhance compliance with the Health and safety standards within the mining industries of Limpopo province in South Africa. A mixed-method exploratory sequential research design was adopted. The population consisted of 5350 miners. Purposive sampling was used to select the participants in the qualitative strand and stratified random sampling in the quantitative strand. Semi-structured interviews were conducted among the occupational health nurse practitioners and the health and safety team. Thematic analysis was used to generate an understanding of the interviews. In the quantitative strand, a survey was conducted using a self-administered questionnaire. Data were analysed using SPSS version 26.0. A descriptive statistical test was used in the analysis of data including frequencies, means, and standard deviation. Cronbach's alpha test was used to measure internal consistency. The integrated results revealed that there are diverse experiences related to health and safety standards compliance among the mineworkers. The main findings were challenges related to leadership compliance and also related to the cost of maintaining safety, Miner's behavior-related challenges; the impact of non-compliance on the overall health of the miners was also described, the conflict between production and safety. Health and safety compliance is not just mere compliance with regulations and standards but a culture that warrants the miners and organization to take responsibility for their behavior and actions towards health and safety. Thus taking responsibility for your well-being and other miners.

Keywords: perceptions, compliance, health and safety, legislation, standards, miners

Procedia PDF Downloads 100
25555 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 13
25554 Quality of Chilled Indigenous Ram Semen Using Multi-Species Skim Milk Based Extenders

Authors: Asaduzzaman Rimon, Pankaj Kumar Jha, Abdullah Al Mansur, Mohammad Mofizul Islam, Nasrin Sultana Juyena, Farida Yeasmin Bari

Abstract:

This study was conducted to determine the effects of multi-species skim milk based extenders on sperm quality at 5ºC with the advancement of preservation time. Altogether forty ejaculates, 8 ejaculates for each of the 5 home-made semen extenders: cow skim milk (CSM), goat skim milk (GSM), sheep skim milk (SSM), buffalo skim milk (BSM) and commercial dried skim milk (CDSM) were examined for motility, plasma membrane integrity and normal morphology % of sperm at 0, 24, 48, 72, 96 and 120 hours, respectively. Sperm motility was significantly decreased (P < 0.05) with the increase of preservation time. There were no significant difference in motility % among CSM (84.0±1.4, 82.3±2.1), GSM (84.5±1.0, 82.5±0.6) and CDSM (85.0±80.3±1.3) extenders at 0 and 24 hours, respectively. However, the motility in GSM extender was significantly higher than BSM, SSM and CDSM extender at 48, 72, 96 and 120 hours. The plasma membrane integrity % at 0 hour had no significant difference among the extenders. But, the plasma membrane integrity % in GSM (84.3±0.9, 81.8±1.3, 78.0±2.2, 74.8±0.5, 72.0±1.4) and CSM (82.8±0.5, 80.8±1.0, 78.0±1.4, 73.5±1.7, 70.3±0.5) extenders were significantly higher than BSM (81.0±1.4, 76.3±2.5, 72.5±1.7, 63.8±2.5, 54.0±4.6), SSM (78.5±1.5, 75.0±1.6, 71.5±2.4, 64.3±1.7, 56.5±2.4) and CDSM extenders (78.3±2.4, 75.8±3.9, 72.5±3.3, 64.8±1.0, 60.5±3.3) at 24, 48, 72, 96 and 120 hours, respectively. The sperm morphology % had no significant difference at 0 hour among the extenders but were significantly higher in GSM (83.0±0.8, 81.3±1.5, 79.3±1.3, 73.0±2.2, 70.3±1.3) and CSM (81.5±1.7, 79.3±1.5, 75.8±1.5, 70.3±1.3, 66.3±1.5) than BSM (79.0±1.2, 75.0±1.4, 69.5±1.7, 64.5±3.1, 56.8±2.2), SSM (79.8±1.3, 76.8±2.1, 71.3±3.0, 66.0±2.7, 60.3±4.5) and CDSM (80.0±1.6, 77.0±2.2, 72.0±2.5, 66.3±2.5, 62.0±4.0) extenders at 24, 48, 72, 96 and 120 hours, respectively. The motility, plasma membrane integrity and normal morphology % of sperm had shown no significant difference between GSM and CSM but were found to be higher in GSM extenders. In the end, we concluded from the above study that the goat milk based extenders (GSM) had optimum sperm preserving quality. However, further studies are required to validate followed by fertility rate.

Keywords: chilled semen, indigenous ram, multi-species skim milk based extenders, preservation

Procedia PDF Downloads 419
25553 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 53
25552 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
25551 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 277
25550 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 188
25549 VCloud: A Security Framework for VANET

Authors: Wiseborn Manfe Danquah, D. Turgay Altilar

Abstract:

Vehicular Ad-hoc Network (VANET) is an integral component of Intelligent Transport Systems (ITS) that has enjoyed a lot of attention from the research community and the automotive industry. This is mainly due to the opportunities and challenges it presents. Vehicular Ad-hoc Network being a class of Mobile Ad-hoc Networks (MANET) has all the security concerns existing in traditional MANET as well as new security and privacy concerns introduced by the unique vehicular communication environment. This paper provides a survey of the possible attacks in vehicular environment, as well as security and privacy concerns in VANET. It also provides an insight into the development of a comprehensive cloud framework to provide a more robust and secured communication among vehicular nodes and road side units. Our proposal, a Metropolitan Based Public Interconnected Vehicular Cloud (MIVC) infrastructure seeks to provide a more reliable and secured vehicular communication network.

Keywords: mobile Ad-hoc networks, vehicular ad hoc network, cloud, ITS, road side units (RSU), metropolitan interconnected vehicular cloud (MIVC)

Procedia PDF Downloads 354
25548 Preservation and Promotion of Lao Traditional Food as Luangprabang Province Unique Culture and Tradition in Accordance With One District One Product Policy

Authors: Lamphong Volady

Abstract:

The primary purpose of this study was to explore the traditional cuisine (local food) of Luangprabang Province in line with the Lao PDR’s One District One Product Policy. Another purpose of the study was to examine channels used to present local food, reasons to preserve and promote local food, as well as local food preservation and promotion strategies. It also aimed at testing correlation hypotheses whether there is a statistically significant relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines, attractiveness to consume local food, preservation and promotion of local food problems, and local people’s occupations. The Convergent Parallel Mixed Methods were employed in this study. The results of the study showed that several local cuisines were found to be local food of Luangprabang Province, namely Jeow Bon (Chilli dipping suace), Or Lam or aw lahm (stew buffalo skin, herbs, Mai sakaan), Kai Pan (River Weed Dry), Tam Mak Houng Luangprabang (Papaya Salad), Nang (Yam Buffalo Skin Dry), Sai Oor (Sausage), Laap Sin Koay Sai Mar-Keua Pao (Beef Salad with Roasted Eggplants), Orm Born (Taro leaves Stew), Oor Nor Mai (Bamboo Shoot Sausage), Jeow Nam Poo (Pickled Crab Chillies), Mok Dok Kae (steaming or roasting a Dok Kae Wrapp), Nor Sa Wan, Kao Noom Kee Noo, Kao Noom Ba Bin. It also depicted that YouTube, Facebook, and TikTok were multiple social channels or platforms which were found to be used to introduce traditional food as well as television, smartphone, word of mouth, Lao food fairs and other provincial events. The study also found that local food should be preserved and promoted since traditional food is not only ancestral, ancient, traditional, and local cuisines, but it is also wisdom, unique, and national cuisine. The study also found that people feel attracted to consuming local food because local food is delicious, unique, clean, nutritious, non-contaminated and natural. The study showed that lack of funds to produce local food, inadequate draw materials, lack material to store products, insufficient place to produce and lack of related organizations engagement were found to be problems for preserving and promoting traditional food. Finally, the result of the study revealed that there is a statistically significant weak relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines (R²= 4.5%), (p-value <0.001). There is a statistically significant moderate relationship between enjoyment of having local food and attractiveness to consume local food (R²= 7.8%), (p-value <0.001). However, there is a statistically insignificant relationship between enjoyment of having local food and preservation and promotion of local food problems (R²= 1.8%), (p-value = 0.086). It was found that there is a statistically insignificant relationship between enjoyment of having local food and local people’s occupations (R²= 0.0%), (p-value = 0.929).

Keywords: local food, preservation, promotion, traditional food, cuisines

Procedia PDF Downloads 77
25547 Assessment the Manner of Obtaining Hierarchies and Privacy of Traditional Houses Entrance in Providing a Safe Place-Case Study: Traditional Houses in Shiraz

Authors: Zahra A. Barzegar, Maryam B. Golboo

Abstract:

In this paper, the manner of obtaining hierarchies and privacy entry of traditional houses in providing a safe place in the city of Shiraz will be evaluated by qualitative–descriptive methods and 6 old houses are the case study. The houses of Shiraz, as the houses in other cities in Iran are a response to climate and physical features. The old part of Shiraz has a compressed and dense texture in which the houses are in narrow and tight alleys. In this regard, the principles of traditional house entrance design have been introduced. The results show that every house has a private entrance. Direction of the entry of most houses is toward the south and with a turn to the South-East side. Entrance to yard path in all the cases is not straight, and this had been done by using 90 degrees rotates of the corridor leading to the yard. Vestibule provides a private place for the house and entrance stairway to the rooftop is located inside it.

Keywords: entrance, components of entrance, hierarchy, frontage, Shiraz houses

Procedia PDF Downloads 308
25546 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 583