Search results for: vertical jump height
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2565

Search results for: vertical jump height

2535 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 73
2534 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation

Procedia PDF Downloads 344
2533 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump

Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil

Abstract:

Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.

Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip

Procedia PDF Downloads 239
2532 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 140
2531 Gravitational Energy Storage by Using Concrete Stacks

Authors: Anusit Punsirichaiyakul, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

The paper aims to study the energy storage system in the form of gravity energy by the weight of concrete stacks. This technology has the potential to replace expensive battery storage. This paper is a trial plan in abandoned mines in Thailand. This is to start with construct concrete boxes to be stacked vertically or obliquely to form appropriate shapes and, therefore, to store the potential energy. The stored energy can be released or discharged back to the system by deploying the concrete stacks to the ground. This is to convert the potential energy stored in the concrete stacks to the kinetic energy of the concrete box movement. This design is incorporating mechanical transmission to reduce the height of the concrete stacks. This study also makes a comparison between the energy used to construct concrete stacks in various shapes and the energy to deploy all the concrete boxes to ground. This paper consists of 2 test systems. The first test is to stack the concrete in vertical shape. The concrete stack has a maximum height of 50 m with a gear ratio of 1:200. The concrete box weight is 115 tons/piece with a total stored energy of 1800 kWh. The oblique system has a height of 50 m with a similar gear ratio of 1:200. The weight of the concrete box is 90 tons/piece and has a total stored energy of 1440 kWh. Also, it has an overall efficiency of 65% and a lifetime of 50 years. This storage has higher storage densities compared to other systems.

Keywords: gravity, concrete stacks, vertical, oblique

Procedia PDF Downloads 126
2530 Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt

Authors: Yomna Amr Ahmed Lotfi Koraim, Dalia Moati Rasmi Elkhateeb

Abstract:

Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt.

Keywords: vertical landscape, green facades, vertical greening, social acceptance, sustainable urban development

Procedia PDF Downloads 327
2529 Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind

Authors: Giorgi Dalakishvili, Goderdzi G. Didebulidze, Maya Todua

Abstract:

The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357.

Keywords: in-homogeneous, sporadic E, thermosphere, wind

Procedia PDF Downloads 126
2528 Sediment Wave and Cyclic Steps as Mechanism for Sediment Transport in Submarine Canyons Thalweg

Authors: Taiwo Olusoji Lawrence, Peace Mawo Aaron

Abstract:

Seismic analysis of bedforms has proven to be one of the best ways to study deepwater sedimentary features. Canyons are known to be sediment transportation conduit. Sediment wave are large-scale depositional bedforms in various parts of the world's oceans formed predominantly by suspended load transport. These undulating objects usually have tens of meters to a few kilometers in wavelength and a height of several meters. Cyclic steps have long long-wave upstream-migrating bedforms confined by internal hydraulic jumps. They usually occur in regions with high gradients and slope breaks. Cyclic steps and migrating sediment waves are the most common bedform on the seafloor. Cyclic steps and related sediment wave bedforms are significant to the morpho-dynamic evolution of deep-water depositional systems architectural elements, especially those located along tectonically active margins with high gradients and slope breaks that can promote internal hydraulic jumps in turbidity currents. This report examined sedimentary activities and sediment transportation in submarine canyons and provided distinctive insight into factors that created a complex seabed canyon system in the Ceara Fortaleza basin Brazilian Equatorial Margin (BEM). The growing importance of cyclic steps made it imperative to understand the parameters leading to their formation, migration, and architecture as well as their controls on sediment transport in canyon thalweg. We extracted the parameters of the observed bedforms and evaluated the aspect ratio and asymmetricity. We developed a relationship between the hydraulic jump magnitude, depth of the hydraulic fall and the length of the cyclic step therein. It was understood that an increase in the height of the cyclic step increases the magnitude of the hydraulic jump and thereby increases the rate of deposition on the preceding stoss side. An increase in the length of the cyclic steps reduces the magnitude of the hydraulic jump and reduces the rate of deposition at the stoss side. Therefore, flat stoss side was noticed at most preceding cyclic step and sediment wave.

Keywords: Ceara Fortaleza, submarine canyons, cyclic steps, sediment wave

Procedia PDF Downloads 95
2527 The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame

Authors: Mahdi Shokrollahi

Abstract:

Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes.

Keywords: vertical earthquake acceleration, near-fault area, steel frame, horizontal and vertical component of earthquake, buckling-restrained brace

Procedia PDF Downloads 157
2526 Study of the Vertical Handoff in Heterogeneous Networks and Implement Based on Opnet

Authors: Wafa Benaatou, Adnane Latif

Abstract:

In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS and WiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.

Keywords: vertical handoff, WLAN, UMTS, WIMAX, heterogeneous

Procedia PDF Downloads 363
2525 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 127
2524 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 234
2523 Comparisons of Drop Jump and Countermovement Jump Performance for Male Basketball Players with and without Low-Dye Taping Application

Authors: Chung Yan Natalia Yeung, Man Kit Indy Ho, Kin Yu Stan Chan, Ho Pui Kipper Lam, Man Wah Genie Tong, Tze Chung Jim Luk

Abstract:

Excessive foot pronation is a well-known risk factor of knee and foot injuries such as patellofemoral pain, patellar and Achilles tendinopathy, and plantar fasciitis. Low-Dye taping (LDT) application is not uncommon for basketball players to control excessive foot pronation for pain control and injury prevention. The primary potential benefits of using LDT include providing additional supports to medial longitudinal arch and restricting the excessive midfoot and subtalar motion in weight-bearing activities such as running and landing. Meanwhile, restrictions provided by the rigid tape may also potentially limit functional joint movements and sports performance. Coaches and athletes need to weigh the potential benefits and harmful effects before making a decision if applying LDT technique is worthwhile or not. However, the influence of using LDT on basketball-related performance such as explosive and reactive strength is not well understood. Therefore, the purpose of this study was to investigate the change of drop jump (DJ) and countermovement jump (CMJ) performance before and after LDT application for collegiate male basketball players. In this within-subject crossover study, 12 healthy male basketball players (age: 21.7 ± 2.5 years) with at least 3-year regular basketball training experience were recruited. Navicular drop (ND) test was adopted as the screening and only those with excessive pronation (ND ≥ 10mm) were included. Participants with recent lower limb injury history were excluded. Recruited subjects were required to perform both ND, DJ (on a platform of 40cm height) and CMJ (without arms swing) tests in series during taped and non-taped conditions in the counterbalanced order. Reactive strength index (RSI) was calculated by using the flight time divided by the ground contact time measured. For DJ and CMJ tests, the best of three trials was used for analysis. The difference between taped and non-taped conditions for each test was further calculated through standardized effect ± 90% confidence intervals (CI) with clinical magnitude-based inference (MBI). Paired samples T-test showed significant decrease in ND (-4.68 ± 1.44mm; 95% CI: -3.77, -5.60; p < 0.05) while MBI demonstrated most likely beneficial and large effect (standardize effect: -1.59 ± 0.27) in LDT condition. For DJ test, significant increase in both flight time (25.25 ± 29.96ms; 95% CI: 6.22, 44.28; p < 0.05) and RSI (0.22 ± 0.22; 95% CI: 0.08, 0.36; p < 0.05) were observed. In taped condition, MBI showed very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.49) in flight time, possibly beneficial and small effect (standardized effect: -0.26 ± 0.29) in ground contact time and very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.42) in RSI. No significant difference in CMJ was observed (95% CI: -2.73, 2.08; p > 0.05). For basketball players with pes planus, applying LDT could substantially support the foot by elevating the navicular height and potentially provide acute beneficial effects in reactive strength performance. Meanwhile, no significant harmful effect on CMJ was observed. Basketball players may consider applying LDT before the game or training to enhance the reactive strength performance. However since the observed effects in this study could not generalize to other players without excessive foot pronation, further studies on players with normal foot arch or navicular height are recommended.

Keywords: flight time, pes planus, pronated foot, reactive strength index

Procedia PDF Downloads 132
2522 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 414
2521 Social Sustainability Quotient of Vertical Habitats

Authors: Abdullah Mohamed, Raipat Vaidehi

Abstract:

With increasing immigration to urban areas, every city is experiencing shortage of housing. Vertical habitats are the only solution to this problem, it is hence important to make sure that these habitats are environmentally, socially and economically sustainable. A lot of work on vertical habitats has already been carried out in terms of environmental and economic sustainability, hence this research aims to study the aspects of social sustainability of the vertical habitats. It being the least studied topic, opens many reals of novelty and uniqueness. In this Research, user perception survey and various mapping methods have been used to study the social sustainability of the existing vertical habitats in the selected cities. The various aspects that can be used to define social sustainability of any place include; safety, equity, accessibility, legibility, imagibility, readability, memorability and ease of movement. This research would help to evolve new strategies in form of design and/or guidelines to make the existing vertical habitats socially sustainable.

Keywords: user lifestyle, user perception, social sustainability, vertical habitats

Procedia PDF Downloads 285
2520 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 379
2519 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options

Authors: Wajih Abbassi, Zouhaier Ben Khelifa

Abstract:

The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.

Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options

Procedia PDF Downloads 406
2518 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand

Authors: Won Taek Oh, Adin Richard

Abstract:

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.

Keywords: critical height, matric suction, unsaturated soil, unsupported trench

Procedia PDF Downloads 104
2517 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 143
2516 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 96
2515 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 150
2514 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Authors: S. Matour, M. Mahdavinejad, R. Fayaz

Abstract:

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance

Procedia PDF Downloads 181
2513 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 333
2512 Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil

Authors: V. K. Arora, Suraj Prakash

Abstract:

Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles.

Keywords: vertical piles, positive battered piles, negative battered piles, cohesionless soil, lateral loads, model test

Procedia PDF Downloads 382
2511 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 92
2510 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 569
2509 Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures

Authors: Faizan Ahmad, Jenna Wong

Abstract:

Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures.

Keywords: seismic analysis, vertical accelerations, time lag, isolated structures

Procedia PDF Downloads 308
2508 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 369
2507 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 270
2506 Effects of GRF on CMJ in Different Wooden Surface Systems

Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen

Abstract:

Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.

Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad

Procedia PDF Downloads 413