Search results for: score prediction
4121 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: prediction model, sensitivity analysis, simulation method, USMLE
Procedia PDF Downloads 3404120 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 3094119 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 3074118 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 4154117 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence
Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno
Abstract:
Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index
Procedia PDF Downloads 1694116 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 1134115 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1284114 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1704113 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 3324112 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1474111 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 904110 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1564109 The Keys to Innovation: Defining and Evaluating Attributes that Measure Innovation Capabilities
Authors: Mohammad Samarah, Benjamin Stark, Jennifer Kindle, Langley Payton
Abstract:
Innovation is a key driver for companies, society, and economic growth. However, assessing and measuring innovation for individuals as well as organizations remains difficult. Our i5-Score presented in this study will help to overcome this difficulty and facilitate measuring the innovation potential. The score is based on a framework we call the 5Gs of innovation which defines specific innovation attributes. Those are 1) the drive for long-term goals 2) the audacity to generate new ideas, 3) the openness to share ideas with others, 4) the ability to grow, and 5) the ability to maintain high levels of optimism. To validate the i5-Score, we conducted a study at Florida Polytechnic University. The results show that the i5-Score is a good measure reflecting the innovative mindset of an individual or a group. Thus, the score can be utilized for evaluating, refining and enhancing innovation capabilities.Keywords: Change Management, Innovation Attributes, Organizational Development, STEM and Venture Creation
Procedia PDF Downloads 1704108 Predicting Financial Distress in South Africa
Authors: Nikki Berrange, Gizelle Willows
Abstract:
Business rescue has become increasingly popular since its inclusion in the Companies Act of South Africa in May 2011. The Alternate Exchange (AltX) of the Johannesburg Stock Exchange has experienced a marked increase in the number of companies entering business rescue. This study sampled twenty companies listed on the AltX to determine whether Altman’s Z-score model for emerging markets (ZEM) or Taffler’s Z-score model is a more accurate model in predicting financial distress for small to medium size companies in South Africa. The study was performed over three different time horizons; one, two and three years prior to the event of financial distress, in order to determine how many companies each model predicted would be unlikely to succeed as well as the predictive ability and accuracy of the respective models. The study found that Taffler’s Z-score model had a greater ability at predicting financial distress from all three-time horizons.Keywords: Altman’s ZEM-score, Altman’s Z-score, AltX, business rescue, Taffler’s Z-score
Procedia PDF Downloads 3744107 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 1294106 The Play Translator’s Score Developing: Methodology for Intercultural Communication
Authors: Akhmylovskaia Larisa, Barysh Andriana
Abstract:
The present paper is introducing the translation score developing methodology and methods in the cross-cultural communication. The ideas and examples presented by the authors illustrate the universal character of translation score developing methods under analysis. Personal experience in the international theatre-making projects, opera laboratories, cross-cultural master-classes, movie and theatre festivals give more opportunities to single out the conditions, forms, means and principles of translation score developing as well as the translator/interpreter’s functions as cultural liaison for multiethnic collaboration.Keywords: methodology of translation score developing, pre-production, analysis, production, post-production, ethnic scene theory, theatre anthropology, laboratory, master-class, educational project, academic project, Stanislavski terminology meta-language, super-objective, participant observation
Procedia PDF Downloads 3264105 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 4674104 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3064103 Biimodal Biometrics System Using Fusion of Iris and Fingerprint
Authors: Attallah Bilal, Hendel Fatiha
Abstract:
This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%.Keywords: iris, fingerprint, sum rule, fusion
Procedia PDF Downloads 3704102 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1444101 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 1344100 Physiotherapy Program for Frozen Shoulder on Pain, Onset of Symptom and Obtaining Modalities
Authors: Narupon Kunbootsri, J. Kraipoj, K. Phandech, P. Sirasaporn
Abstract:
Physiotherapy is one of the treatments for frozen shoulder but there was no data about the treatment of physiotherapy. Moreover, it is question about onset of symptom before physiotherapy program and obtaining physical modalities and delayed start physiotherapy program lead to delayed improvement. Thus the aim of this study was to investigate physiotherapy program for frozen shoulder on pain score, onset of symptom and obtaining physical modalities. A retrospective study design was conducted. 182 medical records of patients with frozen shoulder were reviewed. These frozen shoulders were treated at physiotherapy unit, department of Rehabilitation last 3 years (January, 2014- December, 2016). The data consist of onset of symptom, pain score and obtaining physical modalities were recorded. There was a statistically significant improve in pain score, pretreatment score mean 7.24±1.52 and the last follow up pain score mean 3.88± 1.0 [mean difference 3.18 with 95%CI were [2.45- 3.92]. In addition, the onset of symptoms was 145 days before obtaining physiotherapy program. The physical modalities used frequently were hot pack 14.8% and ultrasound diathermy 13.7%. In conclusion, the retrospective study show physiotherapy program including, hot pack and ultrasound diathermy seem to be useful for frozen shoulder in term of pain score. But onset of symptom is too long to start physiotherapy programs.Keywords: frozen shoulder, physiotherapy, pain score, onset of symptom, physical modality
Procedia PDF Downloads 1774099 The FINDRISC Score for Prediabetes and Diabetes Screening in Adult Libyan Males
Authors: Issam M Hajjaji, Adel Tajoury, Salah R Benhamid
Abstract:
The MENA region has the highest prevalence of diabetes in the world. Various risk scores were developed, not all appropriate locally. The objective of this study is to apply the FINDRISC Score to adult Libyan males to determine its significance, sensitivity, specificity and Positive Predictive Values as an initial screening tool for type 2 diabetes, and suggest a cut-off point. Methods: 600 subjects answered the questionnaire at their place of work, and their waist, weight, height & BP were measured. Thereafter, after excluding those with known diabetes, an Oral Glucose Tolerance Test was done. Results: 414 subjects aged 19-78 completed the questionnaire and tests. 35 (8.4%) had impaired glucose tolerance (IGT) and 13 (3.1%) had diabetes (DM). The AUC-ROC for IGT was 0.614 (95% CI: 0.527-0.701), for DM 0.810 (95% CI: 0.709-0.911) and for both 0.689 (95% CI: 0.609-0.769). The Positive Predictive Value for a cut-off score of 5 were 15.5%, 11.7% & 5.7% for both conditions combined, prediabetes & diabetes respectively. The equivalent values for a cut-off score of 8 were 16.1%, 9.0% & 7.7%. The Negative Predictive Values were uniformly above 90%. Conclusions & Recommendations: The FINDRISC Score had a low predictive value for dysglycaemia in this sample and performed at a level of significance for IGT that is similar to other MENA countries, but did better for DM. A larger sample that included women is suggested, with a view of adjusting the Score to suit the local population.Keywords: diabetes, FINDRISK, Libya, prediabetes
Procedia PDF Downloads 1274098 Level of Gross Motor Development and Age Equivalents of Children 9 Years
Authors: Masri Baharom
Abstract:
The purpose of the study is to identify the age group of children 9 who have experienced delays in gross motor development. Instrument used in this study is Test Gross Motor Development / TGMD-2 (Ulrich, 2000) which was adopted at the international level. Gross motor development data were obtained by video recording (Sony (DRC-SR42 with a 40x optical zoom capability, and software Ultimate Studio 14) on locomotor and manipulative skills. A total n = 192 persons, children of 9 years (9.30 ± .431) at Sekolah Kebangsaan Mutiara Perdana, Bayan Lepas, Penang were involved as subjects. Children age 9 years experienced delays AELS (4.61 ± .69), AEMS (5:52 ± .62) and GMDQ (7.26 ± .2.14). The findings based on descriptive rating indicated that the performance of children age 9 years acquired low levels of AELS, MSS, AEMS and very low in LSS and GMDS.Keywords: gross motor development score, locomotor standard score, age equivalent locomotor score, manipulative standard score, age equivalent manipulative score
Procedia PDF Downloads 4454097 Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification
Authors: Volker Wannack
Abstract:
The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green."Keywords: hydrogen, blockchain, sustainability, structural change
Procedia PDF Downloads 654096 Knowledge, Attitude, and Practice of Medical Ethics amongst Paediatric Surgeons and Trainees in Malaysia
Authors: Salehah Tahkin, Norlaila Mustafa, Dayang Anita Abdul Aziz
Abstract:
Knowledge of medical ethics is important to all practitioners so the best care can be delivered to all patients through safe practice. Surgeons are not exceptions to this. Knowledge, attitude, and practice (KAP) of medical ethics among paediatric surgeons and trainees in Malaysia has not been evaluated before. This study aims to determine the level of KAP regarding medical ethics among these groups. This was a cross-sectional study involving three groups of samples, i.e., paediatric surgeons (PS), paediatric surgical trainees (PST), and medical officers with a special interest in paediatric surgery (MO). A validated KAP questionnaire was used. Standard formulas were used to calculate objective indexes for measuring KAP, which were then compared for statistical significance across different sample groups; p less than 0.05 is taken as significant. The index is rated into 5 classes using a score of 0 to 10, i.e., poor (1-2.99), fair (3-4.99), good (5-6.99), very good (7-8.99), and excellent (9-10). There were 117 samples, i.e., PS n=45 (38.5%), PST n=25 (21.3%), and MO n=47 (40.2%). For knowledge, all three groups display a good index score (mean score of 5.44). For attitude, PS and MO also display an index score of good (mean score of 5.81), while the PST index score was fair (4.82). For practice, our study shows a highest score of 7.14 (very good) among PST. However, these differences were not statistically significant (p> 0.05). Conclusion: Training in paediatric surgery must continue to emphasize professionalism and medical ethics education to deliver the best health care services.Keywords: KAP, medical ethics, paediatric, surgeons, trainees
Procedia PDF Downloads 804095 Regional Disparities in the Level of Education in West Bengal
Authors: Nafisa Banu
Abstract:
The present study is an attempt to analyze the regional disparities in the level of education in West Bengal. The data based on secondary sources obtained from a census of India. The study is divided into four sections. The first section presents introductions, objectives and brief descriptions of the study area, second part discuss the methodology and data base, while third and fourth comprise the empirical results, interpretation, and conclusion respectively. For showing the level of educational development, 8 indicators have been selected and Z- score and composite score techniques have been applied. The present study finds out there are large variations of educational level due to various historical, economical, socio-cultural factors of the study area.Keywords: education, regional disparity, literacy rate, Z-score, composite score
Procedia PDF Downloads 3574094 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 3494093 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine
Procedia PDF Downloads 3624092 Level Of Gross Motor Development And Age Equivalents Of 9-Year-Old Children
Authors: Ahmad Hashim, Masri Baharom
Abstract:
The purpose of the study is to identify the age group of children 9 who have experienced delays in gross motor development. Instrument used in this study is Test Gross Motor Development / TGMD-2 (Ulrich, 2000) which was adopted at the international level. Gross motor development data were obtained by video recording (Sony (DRC-SR42 with a 40x optical zoom capability, and software Ultimate Studio 14) on locomotor and manipulative skills. A total n = 192 persons, children of 9 years (9.30 ± .431) at Sekolah Kebangsaan Mutiara Perdana, Bayan Lepas, Penang were involved as subjects. Children age 9 years experienced delays AELS (4.61 ± .69), AEMS (5:52 ± .62) and GMDQ (7.26 ± .2.14). The findings based on descriptive rating indicated that the performance of children age 9 years acquired low levels of AELS, MSS, AEMS and very low in LSS and GMDS.Keywords: gross motor development score, locomotor standard score, age equivalent locomotor score, manipulative standard score, age equivalent manipulative score
Procedia PDF Downloads 411