Search results for: recombinant protein
2384 Design and Optimisation of 2-Oxoglutarate Dioxygenase Expression in Escherichia coli Strains for Production of Bioethylene from Crude Glycerol
Authors: Idan Chiyanzu, Maruping Mangena
Abstract:
Crude glycerol, a major by-product from the transesterification of triacylglycerides with alcohol to biodiesel, is known to have a broad range of applications. For example, its bioconversion can afford a wide range of chemicals including alcohols, organic acids, hydrogen, solvents and intermediate compounds. In bacteria, the 2-oxoglutarate dioxygenase (2-OGD) enzymes are widely found among the Pseudomonas syringae species and have been recognized with an emerging importance in ethylene formation. However, the use of optimized enzyme function in recombinant systems for crude glycerol conversion to ethylene is still not been reported. The present study investigated the production of ethylene from crude glycerol using engineered E. coli MG1655 and JM109 strains. Ethylene production with an optimized expression system for 2-OGD in E. coli using a codon optimized construct of the ethylene-forming gene was studied. The codon-optimization resulted in a 20-fold increase of protein production and thus an enhanced production of the ethylene gas. For a reliable bioreactor performance, the effect of temperature, fermentation time, pH, substrate concentration, the concentration of methanol, concentration of potassium hydroxide and media supplements on ethylene yield was investigated. The results demonstrate that the recombinant enzyme can be used for future studies to exploit the conversion of low-priced crude glycerol into advanced value products like light olefins, and tools including recombineering techniques for DNA, molecular biology, and bioengineering can be used to allowing unlimited the production of ethylene directly from the fermentation of crude glycerol. It can be concluded that recombinant E.coli production systems represent significantly secure, renewable and environmentally safe alternative to thermochemical approach to ethylene production.Keywords: crude glycerol, bioethylene, recombinant E. coli, optimization
Procedia PDF Downloads 2792383 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum
Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*
Abstract:
African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity
Procedia PDF Downloads 772382 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50
Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song
Abstract:
Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization
Procedia PDF Downloads 2222381 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon
Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit
Abstract:
A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon
Procedia PDF Downloads 2362380 Cloning and Expression of the ansZ Gene from Bacillus sp. CH11 Isolated from Chilca salterns in Peru
Authors: Stephy Saavedra, Annsy C. Arredondo, Gisele Monteiro, Adalberto Pessoa Jr, Carol N. Flores-Fernandez, Amparo I. Zavaleta
Abstract:
L-asparaginase from bacterial sources is used in leukemic treatment and food industry. This enzyme is classified based on its affinity towards L-asparagine and L-glutamine. Likewise, ansZ genes express L-asparaginase with higher affinity to L-asparagine. The aim of this work was to clone and express of ansZ gene from Bacillus sp. CH11 isolated from Chilca salterns in Peru. The gene encoding L-asparaginase was cloned into pET15b vector and transformed in Escherichia coli BL21 (DE3) pLysS. The expression was carried out in a batch culture using LB broth and 0.5 mM IPTG. The recombinant L-asparaginase showed a molecular weight of ~ 39 kDa by SDS PAGE and a specific activity of 3.19 IU/mg of protein. The cloning and expression of ansZ gene from this halotolerant Bacillus sp. CH11 allowed having a biological input to improve a future scaling-up.Keywords: ansZ gene, Bacillus sp, Chilca salterns, recombinant L-asparaginase
Procedia PDF Downloads 1792379 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks
Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar
Abstract:
Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization
Procedia PDF Downloads 2572378 Lentil Protein Fortification in Cranberry Squash
Authors: Sandhya Devi A
Abstract:
The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash.Keywords: alkaline extraction, cranberry squash, protein fortification, response surface methodology
Procedia PDF Downloads 1112377 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde
Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate
Abstract:
Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase
Procedia PDF Downloads 4222376 Hydration of Protein-RNA Recognition Sites
Authors: Amita Barik, Ranjit Prasad Bahadur
Abstract:
We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces.Keywords: h-bonds, minor-major grooves, preserved water, protein-RNA interfaces
Procedia PDF Downloads 3022375 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes
Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai
Abstract:
This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence
Procedia PDF Downloads 5052374 Protein Crystallization Induced by Surface Plasmon Resonance
Authors: Tetsuo Okutsu
Abstract:
We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted.Keywords: lysozyme, plasmon, protein, crystallization, RNaseA
Procedia PDF Downloads 2182373 In vitro Evaluation of Immunogenic Properties of Oral Application of Rabies Virus Surface Glycoprotein Antigen Conjugated to Beta-Glucan Nanoparticles in a Mouse Model
Authors: Narges Bahmanyar, Masoud Ghorbani
Abstract:
Rabies is caused by several species of the genus Lyssavirus in the Rhabdoviridae family. The disease is deadly encephalitis transmitted from warm-blooded animals to humans, and domestic and wild carnivores play the most crucial role in its transmission. The prevalence of rabies in poor areas of developing salinities is constantly posed as a global threat to public health. According to the World Health Organization, approximately 60,000 people die yearly from rabies. Of these, 60% of deaths are related to the Middle East. Although rabies encephalitis is incurable to date, awareness of the disease and the use of vaccines is the best way to combat the disease. Although effective vaccines are available, there is a high cost involved in vaccine production and management to combat rabies. Increasing the prevalence and discovery of new strains of rabies virus requires the need for safe, effective, and as inexpensive vaccines as possible. One of the approaches considered to achieve the quality and quantity expressed through the manufacture of recombinant types of rabies vaccine. Currently, livestock rabies vaccines are used only in inactivated or live attenuated vaccines, the process of inactivation of which pays attention to considerations. The rabies virus contains a negatively polarized single-stranded RNA genome that encodes the five major structural genes (N, P, M, G, L) from '3 to '5 . Rabies virus glycoprotein G, the major antigen, can produce the virus-neutralizing antibody. N-antigen is another candidate for developing recombinant vaccines. However, because it is within the RNP complex of the virus, the possibility of genetic diversity based on different geographical locations is very high. Glycoprotein G is structurally and antigenically more protected than other genes. Protection at the level of its nucleotide sequence is about 90% and at the amino acid level is 96%. Recombinant vaccines, consisting of a pathogenic subunit, contain fragments of the protein or polysaccharide of the pathogen that have been carefully studied to determine which of these molecules elicits a stronger and more effective immune response. These vaccines minimize the risk of side effects by limiting the immune system's access to the pathogen. Such vaccines are relatively inexpensive, easy to produce, and more stable than vaccines containing viruses or whole bacteria. The problem with these vaccines is that the pathogenic subunits may elicit a weak immune response in the body or may be destroyed before they reach the immune cells, which requires nanoparticles to overcome. Suitable for use as an adjuvant. Among these, biodegradable nanoparticles with functional levels are good candidates as adjuvants for the vaccine. In this study, we intend to use beta-glucan nanoparticles as adjuvants. The surface glycoprotein of the rabies virus (G) is responsible for identifying and binding the virus to the target cell. This glycoprotein is the major protein in the structure of the virus and induces an antibody response in the host. In this study, we intend to use rabies virus surface glycoprotein conjugated with beta-glucan nanoparticles to produce vaccines.Keywords: rabies, vaccines, beta glucan, nanoprticles, adjuvant, recombinant protein
Procedia PDF Downloads 172372 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells
Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li
Abstract:
BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)
Procedia PDF Downloads 2732371 NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide
Authors: Yeon Ho Je
Abstract:
A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an_65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging.Keywords: baculovirus, insecticide, neurotoxin, neurobactrus
Procedia PDF Downloads 3182370 In vitro Protein Folding and Stability Using Thermostable Exoshells
Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum
Abstract:
Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.Keywords: thermostable shell, in vitro folding, stability, functional yield
Procedia PDF Downloads 2482369 Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)
Authors: Ling-Ling E., Hong-Chen Liu, Dong-Sheng Wang, Fang Su, Xia Wu, Zhan-Ping Shi, Yan Lv, Jia-Zhu Wang
Abstract:
Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects.Keywords: nano-hydroxyapatite/collagen/poly (L-lactide), dental pulp stem cell, recombinant human bone morphogenetic protein, bone tissue engineering, alveolar bone
Procedia PDF Downloads 3992368 Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals
Authors: C. C. Lin, S. C. Kan, C. W. Yeh, C. I Chen, C. J. Shieh, Y. C. Liu
Abstract:
In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.Keywords: lipid-deprived residuals of microalgae, cellulosome, cellulose, reducing sugars, kinetics
Procedia PDF Downloads 4022367 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1612366 Exploring the Strategy to Identify Seed-Specific Acyl-Hydrolases from Arabidopsis thaliana by Activity-Based Protein Profiling
Authors: M. Latha, Achintya K. Dolui, P. Vijayaraj
Abstract:
Vegetable oils mainly triacylglycerol (TAG) are an essential nutrient in the human diet as well as one of the major global commodity. There is a pressing need to enhance the yield of oil production to meet the world’s growing demand. Oil content is controlled by the balance between synthesis and breakdown in the cells. Several studies have established to increase the oil content by the overexpression of oil biosynthetic enzymes. Interestingly the significant oil accumulation was observed with impaired TAG hydrolysis. Unfortunately, the structural, as well as the biochemical properties of the lipase enzymes, is widely unknown, and so far, no candidate gene was identified in seeds except sugar-dependent1 (SDP1). Evidence has shown that SDP1directly responsible for initiation of oil breakdown in the seeds during germination. The present study is the identification of seed-specific acyl-hydrolases by activity based proteome profiling (ABPP) using Arabidopsis thaliana as a model system. The ABPP reveals that around 8 to 10 proteins having the serine hydrolase domain and are expressed during germination of Arabidopsis seed. The N-term sequencing, as well as LC-MS/MS analysis, was performed for the differentially expressed protein during germination. The coding region of the identified proteins was cloned, and lipases activity was assessed with purified recombinant protein. The enzyme assay was performed against various lipid substrates, and we have observed the acylhydrolase activity towards lysophosphatidylcholine and monoacylglycerol. Further, the functional characteristic of the identified protein will reveal the physiological significance the enzyme in oil accumulation.Keywords: lipase, lipids, vegetable oil, triacylglycerol
Procedia PDF Downloads 1872365 Membrane Spanning DNA Origami Nanopores for Protein Translocation
Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka
Abstract:
Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing
Procedia PDF Downloads 3232364 Siderophore Receptor Protein from Klebsiella pneumoniae as a Promising Immunogen for Serotype-Independent Therapeutic Lead Development
Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri
Abstract:
Klebsiella pneumoniae causes a wide range of infections, including urinary tract infections, sepsis, bacteremia, pneumonia, and liver abscesses. The emergence of multi-drug resistance in this bacterium led to a major setback for clinical management. WHO also endorsed a need for finding alternative therapy to antibiotics for the treatment of these infections. Development of vaccines and passive antibody therapy has been proven as a potent alternative to antibiotics in the case of MDR, XDR, and PDR Klebsiella infections. Siderophore receptors have been demonstrated to be overexpressed for the internalization of iron siderophore complexes during infections in most Gram-negative bacteria. For the present study, immune response to siderophore receptors to establish this protein as a potential immunogen for the development of therapeutic leads was explored. Clinical strains of Klebsiella pneumoniae were grown in iron-deficient conditions, and the iron-regulated outer membrane proteins were extracted and characterized through mass spectrometry for specific identification. The gene for identified protein was cloned in pET- 28a vector and expressed in E. coli. The native protein and the recombinant protein were isolated and purified and used as antigens for the generation of immune response in BALB/c mice. The native protein of Klebsiella pneumoniae grown in iron-deficient conditions was identified as FepA (Ferrienterobactin receptor) and other siderophore receptors. This 80 kDa protein generated an immune response in BALB/c mice. The antiserum from mice after subsequent booster doses was collected and showed binding with FepA protein in western blot and phagocytic uptake of the K. pneumoniae in the presence antiserum from immunized mice also observed from the animal studies after bacterial challenge post immunisation in mice have shown bacterial clearance. The antiserum from mice showed binding and clearance of the Klebsiella pneumoniae bacteria in vitro and in vivo. These antigens used for generating an active immune response in mice can further be used for therapeutic monoclonal antibody development against Klebsiella pneumoniae infections.Keywords: antiserum, FepA, Klebsiella pneumoniae, multi drug resistance, siderophore receptor
Procedia PDF Downloads 1022363 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases
Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa
Abstract:
Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse
Procedia PDF Downloads 2292362 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut
Authors: Jung-En Kuan, Whei-Fen Wu
Abstract:
In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.Keywords: enzyme, esterase, lipotic hydrolase, type IV
Procedia PDF Downloads 1332361 Immobilization Strategy of Recombinant Xylanase from Trichoderma reesei by Cross-Linked Enzyme Aggregates
Authors: S. Md. Shaarani, J. Md. Jahim, R. A. Rahman, R. Md. Illias
Abstract:
Modern developments in biotechnology have paved the way for extensive use of biocatalysis in industries. Although it offers immense potential, industrial application is usually hampered by lack of operational stability, difficulty in recovery as well as limited re-use of the enzyme. These drawbacks, however, can be overcome by immobilization. Cross-linked enzyme aggregates (CLEAs), a versatile carrier-free immobilization technique is one that is currently capturing global interest. This approach involves precipitating soluble enzyme with an appropriate precipitant and subsequent crosslinking by a crosslinking reagent. Without ineffective carriers, CLEAs offer high enzymatic activity, stability and reduced production cost. This study demonstrated successful CLEA synthesis of recombinant xylanase from Trichoderma reesei using ethanol as aggregating agent and glutaraldehyde (2% (v/v); 100 mM) as crosslinker. Effects of additives including proteic feeder such as bovine serum albumin (BSA) and poly-L-Lysine were investigated to reveal its significance in enhancing the performance of enzyme. Addition of 0.1 mg BSA/U xylanase showed considerable increment in CLEA development with approximately 50% retained activity.Keywords: cross-linked, immobilization, recombinant, xylanase
Procedia PDF Downloads 3582360 DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease
Authors: Rasha M. Hussein, Reem M. Hashem, Laila A. Rashed
Abstract:
Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism.Keywords: Aβ, Alzheimer’s disease, chaperone, DNAJB6, aggregation
Procedia PDF Downloads 5122359 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme
Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh
Abstract:
The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry
Procedia PDF Downloads 4902358 Correlation between Resistance to Non-Specific Inhibitor and Mammalian Pathogenicity of an Egg Adapted H9N2 Virus
Authors: Chung-Young Lee, Se-Hee Ahn, Jun-Gu Choi, Youn-Jeong Lee, Hyuk-Joon Kwon, Jae-Hong Kim
Abstract:
A/chicken/Korea/01310/2001 (H9N2) (01310) was passaged through embryonated chicken eggs (ECEs) by 20 times (01310-E20), and it has been used for an inactivated oil emulsion vaccine in Korea. After sequential passages, 01310-E20 showed higher pathogenicity in ECEs and acquired multiple mutations including a potential N-glycosylation at position 133 (H3 numbering) in HA and 18aa-deletion in NA stalk. To evaluate the effect of these mutations on the mammalian pathogenicity and resistance to non-specific inhibitors, we generated four PR8-derived recombinant viruses with different combinations of HA and NA from 01310-E2 and 01310-E20 (rH2N2, rH2N20, rH20N2, and rH20N20). According to our results, recombinant viruses containing 01310 E20 HA showed higher growth property in MDCK cells and higher virulence on mice than those containing 01310 E2 HA regardless of NA. The hemagglutination activity of rH20N20 was less inhibited by egg white and mouse lung extract than that of other recombinant viruses. Thus, the increased pathogenicity of 01310-E20 may be related to both higher replication efficiency and resistance to non-specific inhibitors in mice.Keywords: avian influenza virus, egg adaptation, H9N2, N-glycosylation, stalk deletion of neuraminidase
Procedia PDF Downloads 2872357 Aptamers: A Potential Strategy for COVID-19 Treatment
Authors: Mohamad Ammar Ayass, Natalya Griko, Victor Pashkov, Wanying Cao, Kevin Zhu, Jin Zhang, Lina Abi Mosleh
Abstract:
Respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Early evidence pointed at the angiotensin-converting enzyme 2 (ACE-2) expressed on the epithelial cells of the lung as the main entry point of SARS-CoV-2 into the cells. The viral entry is mediated by the binding of the Receptor Binding Domain (RBD) of the spike protein that is expressed on the surface of the virus to the ACE-2 receptor. As the number of SARS-CoV-2 variants continues to increase, mutations arising in the RBD of SARS-CoV-2 may lead to the ineffectiveness of RBD targeted neutralizing antibodies. To address this limitation, the objective of this study is to develop a combination of aptamers that target different regions of the RBD, preventing the binding of the spike protein to ACE-2 receptor and subsequent viral entry and replication. A safe and innovative biomedical tool was developed to inhibit viral infection and reduce the harms of COVID-19. In the present study, DNA aptamers were developed against a recombinant trimer S protein using the Systematic Evolution of Ligands by Exponential enrichment (SELEX). Negative selection was introduced at round number 7 to select for aptamers that bind specifically to the RBD domain. A series of 9 aptamers (ADI2010, ADI2011, ADI201L, ADI203L, ADI205L, ADIR68, ADIR74, ADIR80, ADIR83) were selected and characterized with high binding affinity and specificity to the RBD of the spike protein. Aptamers (ADI25, ADI2009, ADI203L) were able to bind and pull down endogenous spike protein expressed on the surface of SARS-CoV-2 virus in COVID-19 positive patient samples and determined by liquid chromatography- tandem mass spectrometry analysis (LC-MS/MS). LC-MS/MS data confirmed that aptamers can bind to the RBD of the spike protein. Furthermore, results indicated that the combination of the 9 best aptamers inhibited the binding of the purified trimer spike protein to the ACE-2 receptor found on the surface of Vero E6 cells. In the same experiment, the combined aptamers displayed a better neutralizing effect than antibodies. The data suggests that the selected aptamers could be used in therapy to neutralize the effect of the SARS-CoV-2 virus by inhibiting the interaction between the RBD and ACE-2 receptor, preventing viral entry into target cells and therefore blocking viral replication.Keywords: aptamer, ACE-2 receptor, binding inhibitor, COVID-19, spike protein, SARS-CoV-2, treatment
Procedia PDF Downloads 1852356 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process
Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres
Abstract:
Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products
Procedia PDF Downloads 892355 Physicochemical Properties of Soy Protein Isolate (SPI): Starch Conjugates Treated by Sonication
Authors: Gulcin Yildiz, Hao Feng
Abstract:
In recent years there is growing interested in using soy protein because of several advantages compared to other protein sources, such as high nutritional value, steady supply, and low cost. Soy protein isolate (SPI) is the most refined soy protein product. It contains 90% protein in a moisture-free form and has some desirable functionalities. Creating a protein-polysaccharide conjugate to be the emulsifying agent rather than the protein alone can markedly enhance its stability. This study was undertaken to examine the effects of ultrasound treatments on the physicochemical properties of SPI-starch conjugates. The soy protein isolate (SPI, Pro-Fam® 955) samples were obtained from the Archer Daniels Midland Company. Protein concentrations were analyzed by the Bardford method using BSA as the standard. The volume-weighted mean diameters D [4,3] of protein–polysaccharide conjugates were measured by dynamic light scattering (DLS). Surface hydrophobicity of the conjugates was measured by using 1-anilino-8-naphthalenesulfonate (ANS) (Sigma-Aldrich, St. Louis, MO, USA). Increasing the pH from 2 to 12 resulted in increased protein solubility. The highest solubility was 69.2% for the sample treated with ultrasonication at pH 12, while the lowest (9.13%) was observed in the Control. For the other pH conditions, the protein solubility values ranged from 40.53 to 49.65%. The ultrasound treatment significantly decreased the particle sizes of the SPI-modified starch conjugates. While the D [4,3] for the Control was 731.6 nm, it was 293.7 nm for the samples treated by sonication at pH 12. The surface hydrophobicity (H0) of SPI-starch at all pH conditions were significantly higher than those in the Control. Ultrasonication was proven to be effective in improving the solubility and emulsifying properties of soy protein isolate-starch conjugates.Keywords: particle size, solubility, soy protein isolate, ultrasonication
Procedia PDF Downloads 422