Search results for: rainfall intensity-duration-frequency data
25395 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia
Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka
Abstract:
There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.Keywords: elevation, forest cover, rainfall, slope
Procedia PDF Downloads 54725394 Trends of Seasonal and Annual Rainfall in the South-Central Climatic Zone of Bangladesh Using Mann-Kendall Trend Test
Authors: M. T. Islam, S. H. Shakif, R. Hasan, S. H. Kobi
Abstract:
Investigation of rainfall trends is crucial considering climate change, food security, and the economy of a particular region. This research aims to study seasonal and annual precipitation trends and their abrupt changes over time in the south-central climatic zone of Bangladesh using monthly time series data of 50 years (1970-2019). A trend-free pre-whitening method has been employed to make necessary adjustments for autocorrelations in the rainfall data. Trends in rainfall and their intensity have been observed using the non-parametric Mann-Kendall test and Theil-Sen estimator. Significant changes and fluctuation points in the data series have been detected using the sequential Mann-Kendall test at the 95% confidence limit. The study findings show that most of the rainfall stations in the study area have a decreasing precipitation pattern throughout all seasons. The maximum decline in the rainfall intensity has been found for the Tangail station (-8.24 mm/year) during monsoon. Madaripur and Chandpur stations have shown slight positive trends in post-monsoon rainfall. In terms of annual precipitation, a negative rainfall pattern has been identified in each station, with a maximum decrement (-) of 14.48 mm/year at Chandpur. However, all the trends are statistically non-significant within the 95% confidence interval, and their monotonic association with time ranges from very weak to weak. From the sequential Mann-Kendall test, the year of changing points for annual and seasonal downward precipitation trends occur mostly after the 90s for Dhaka and Barishal stations. For Chandpur, the fluctuation points arrive after the mid-70s in most cases.Keywords: trend analysis, Mann-Kendall test, Theil-Sen estimator, sequential Mann-Kendall test, rainfall trend
Procedia PDF Downloads 8025393 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: flood, HEC-HMS, prediction, rainfall, runoff
Procedia PDF Downloads 39525392 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda
Authors: Emmanuel Iyamuremye
Abstract:
Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution
Procedia PDF Downloads 13525391 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes
Authors: Nadarajah I. Ramesh
Abstract:
Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model
Procedia PDF Downloads 27825390 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change
Authors: Ali Razmi, Saeed Golian
Abstract:
Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.Keywords: climate change, climate variables, copula, joint probability
Procedia PDF Downloads 36025389 Spatial Variation of WRF Model Rainfall Prediction over Uganda
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo
Abstract:
Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model
Procedia PDF Downloads 31125388 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes
Authors: Bouziane Mohamed Tewfik
Abstract:
In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis
Procedia PDF Downloads 46825387 Forecasting of the Mobility of Rainfall-Induced Slow-Moving Landslides Using a Two-Block Model
Authors: Antonello Troncone, Luigi Pugliese, Andrea Parise, Enrico Conte
Abstract:
The present study deals with the landslides periodically reactivated by groundwater level fluctuations owing to rainfall. The main type of movement which generally characterizes these landslides consists in sliding with quite small-displacement rates. Another peculiar characteristic of these landslides is that soil deformations are essentially concentrated within a thin shear band located below the body of the landslide, which, consequently, undergoes an approximately rigid sliding. In this context, a simple method is proposed in the present study to forecast the movements of this type of landslides owing to rainfall. To this purpose, the landslide body is schematized by means of a two-block model. Some analytical solutions are derived to relate rainfall measurements with groundwater level oscillations and these latter, in turn, to landslide mobility. The proposed method is attractive for engineering applications since it requires few parameters as input data, many of which can be obtained from conventional geotechnical tests. To demonstrate the predictive capability of the proposed method, the application to a well-documented landslide periodically reactivated by rainfall is shown.Keywords: rainfall, water level fluctuations, landslide mobility, two-block model
Procedia PDF Downloads 12125386 Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria
Authors: Iliya Bitrus Abaje
Abstract:
This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area.Keywords: anomalies, linear trend, rainfall, temperature
Procedia PDF Downloads 31825385 Trends in Extreme Rainfall Events in Tasmania, Australia
Authors: Orpita U. Laz, Ataur Rahman
Abstract:
Climate change will affect various aspects of hydrological cycle such as rainfall. A change in rainfall will affect flood magnitude and frequency in future which will affect the design and operation of hydraulic structures. In this paper, trends in sub-hourly, sub-daily, and daily extreme rainfall events from 18 rainfall stations located in Tasmania, Australia are examined. Two non-parametric tests (Mann-Kendall and Spearman’s Rho) are applied to detect trends at 10%, 5%, and 1% significance levels. Sub-hourly (6, 12, 18, and 30 minutes) annual maximum rainfall events have been found to experience statistically significant upward trends at 10 % level of significance. However, sub-daily durations (1 hour, 3 and 12 hours) exhibit decreasing trends and no trends exists for longer duration rainfall events (e.g. 24 and 72 hours). Some of the durations (e.g. 6 minutes and 6 hours) show similar results (with upward trends) for both the tests. For 12, 18, 60 minutes and 3 hours durations both the tests show similar downward trends. This finding has important implication for Tasmania in the design of urban infrastructure where shorter duration rainfall events are more relevant for smaller urban catchments such as parking lots, roof catchments and smaller sub-divisions.Keywords: climate change, design rainfall, Mann-Kendall test, trends, Spearman’s Rho, Tasmania
Procedia PDF Downloads 21325384 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 29425383 An Investigation of Rainfall Changes in KanganCity During Years 1964 to 2003
Authors: Borzou Faramarzi, Farideh Azimi, Azam Gohardoust, Abbas Ghasemi Ghasemvand, Maryam Mirzaei, Mandana Amani
Abstract:
In this study, attempts were made to examine and analyze the trend for rainfall changes in Kangan City, Booshehr Province, during the time span 1964 to 2003, using seven rainfall threshold indices based on 50 climate extremes indices approved by WMO–CCL/CLIVAR. These indices include days with heavy precipitations, days with rainfalls, frequency of rainfall threshold values, intensity of rainfall threshold values, percentage of rainfall threshold values, successive days of rainfall, and successive days with no precipitation. Results are indicative of the fact that Kangan City climatic conditions have become more dried than before. Indices days with heavy precipitations and days with rainfalls do not show a certain trend in Kangan City. Frequency, intensity, and percentage of rainfall threshold values in the station under investigation do not indicate a certain trend. In analysis of time series of rainfall extreme indices, generally, it was revealed that Kangan City is influenced by general factors of global warming. Calculation of values for the next 10 years based on ARIMA models demonstrates a continuation of warming trends in Kangan City. On the whole, rainfall conditions in Kangan City have experienced more dry periods compared to the past, the trend which is also observable for next 10 years.Keywords: climatic indices, climate change, extreme temperature and precipitation, time series
Procedia PDF Downloads 27225382 Rainfall and Temperature Characteristics of the Middle and Lower Awash Areas of Ethiopia
Authors: Melese Tadesse Morebo
Abstract:
Pastoral and agro-pastoral communities in East Africa, particularly in Ethiopia, are vulnerable to climate-related risks. The aim of this study is to characterize the annual, seasonal, and monthly rainfall and temperature of the middle and lower awash areas of Ethiopia. Start of season (SOS), end of season (EOS), length of growing season (LGS), number of rainy days, and probability of dry spell occurrences were analyzed using INSTAT Plus (v3.7) software. Daily rainfall and temperature data for 33 years (1990–2022) from six stations were analyzed. The result of the study revealed that the annual rainfall in the study area as a whole showed an increasing trend, but its trend was statistically non-significant. During the study period, the Kiremt rainfall at Amibara station showed statistically significant increasing trends. The trend analysis of SOS, EOS, and LGS shows up and down trends at all stations. The mean lengths of growing seasons in the study area ranged from 20 to 61 days during the study period. In the study area, the annual mean maximum temperature ranged between 34.1°C and 38.3°C over the last three decades. All stations within the research area during the study period, the annual minimum temperature exhibited a substantial impact.Keywords: annual rainfall, LGS, minimum temperature, Mann-Kendall test
Procedia PDF Downloads 2425381 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin
Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi
Abstract:
The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling
Procedia PDF Downloads 36825380 Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study
Authors: Yu-Da Chen, Chia-Chun Wu
Abstract:
The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible.Keywords: antecedent soil moisture content, soil loss, runoff coefficient, rainfall-runoff erosivity
Procedia PDF Downloads 6525379 New Hybrid Method to Model Extreme Rainfalls
Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar
Abstract:
Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences
Procedia PDF Downloads 36125378 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy
Authors: Zviad Ghadua, Biswa Bhattacharya
Abstract:
The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina
Procedia PDF Downloads 13625377 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms
Authors: Mosaad Khadr
Abstract:
Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula
Procedia PDF Downloads 17025376 Estimating City-Level Rooftop Rainwater Harvesting Potential with a Focus on Sustainability
Authors: Priya Madhuri P., Kamini J., Jayanthi S. C.
Abstract:
Rooftop rainwater harvesting is a crucial practice to address water scarcity, pollution, and flooding. This study aims to estimate the rooftop rainwater harvesting potential (RRWHP) for Suryapet, India, using building footprint data and average rainfall data. The study uses rainfall grids from the India Meteorological Department and Very High Resolution Satellite data to capture building footprints and calculate the RRWHP for a five-year period (2015-2020). Buildings with an area of more than 20 square meters are considered. A conservative figure of 60% efficiency for the catchment area is considered. The study chose 31,770 buildings with an effective rooftop area of around 1.56 sq. km. The city experiences annual rainfall values ranging from 791 mm to 987 mm, with August being the wettest month. The projected annual rooftop rainwater harvesting potential is 1.3 billion litres.Keywords: buildings, rooftop rainwater harvesting, sustainable water management, urban
Procedia PDF Downloads 3825375 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis
Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes
Abstract:
An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.Keywords: climate change, cluster analysis, gamma distribution, rainfall
Procedia PDF Downloads 31925374 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 9925373 Risk Assessments of Longest Dry Spells Phenomenon in Northern Tunisia
Authors: Majid Mathlouthi, Fethi Lebdi
Abstract:
Throughout the world, the extent and magnitude of droughts have economic, social and environmental consequences. Today climate change has become more and more felt; most likely they increase the frequency and duration of droughts. An analysis by event of dry event, from series of observations of the daily rainfall is carried out. A daily precipitation threshold value has been set. A catchment localized in Northern Tunisia where the average rainfall is about 600 mm has been studied. Rainfall events are defined as an uninterrupted series of rainfall days understanding at least a day having received a precipitation superior or equal to a fixed threshold. The dry events are constituted of a series of dry days framed by two successive rainfall events. A rainfall event is a vector of coordinates the duration, the rainfall depth per event and the duration of the dry event. The depth and duration are found to be correlated. So we use conditional probabilities to analyse the depth per event. The negative binomial distribution fits well the dry event. The duration of the rainfall event follows a geometric distribution. The length of the climatically cycle adjusts to the Incomplete Gamma. Results of this analysis was used to study of the effects of climate change on water resources and crops and to calibrate precipitation models with little rainfall records. In response to long droughts in the basin, the drought management system is based on three phases during each of the three phases; different measurements are applied and executed. The first is before drought, preparedness and early warning; the second is drought management, mitigation in the event of drought; and the last subsequent drought, when the drought is over.Keywords: dry spell, precipitation threshold, climate vulnerability, adaptation measures
Procedia PDF Downloads 8425372 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 43825371 Flood Scenarios for Hydrological and Hydrodynamic Modelling
Authors: M. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, Fatema Akram
Abstract:
Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.Keywords: climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment
Procedia PDF Downloads 53125370 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 20325369 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India
Authors: Vinay C. Doranalu, Amba Shetty
Abstract:
In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric
Procedia PDF Downloads 29425368 A Comparative Study of Localized Rainfall and Air Pollution between the Urban Area of Sungai Penchala with Sub-Urban and Green Area in Malaysia
Authors: Mohd N. Ahmad, Lariyah Mohd Sidek
Abstract:
The study had shown that Sungai Penchala (urban) was experiencing localized rainfall and hazardous air pollution due to urbanization. The high rainfall that partly added by localized rain had been seen as a threat of causing the flash floods and water quality deterioration in the area. The air pollution that consisted of mainly particulate matter (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) gave an alarming air pollution index (API) to the surrounding area. Comparison among urban area (Sungai Penchala), sub-urban (Gombak), and green areas (Jerantut plus Temerloh) with respect to the rainfall parameters and air pollutants, it was found that the degree of intensities of the parameters was positively related with the urbanization. The air pollutants especially NO2, SO2, and CO were in tandem with the increase of the rainfall. Specifically, if the water catchment area is physically near to the urban area, then the authorities need to look into related urban development program by considering the management of emitted pollutants with respect to the ecological setting of the urban area.Keywords: urbanization, green area localized rainfall, air pollution, sub-urban area
Procedia PDF Downloads 52025367 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation
Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos
Abstract:
A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.Keywords: rainfall, runoff, hydrologic design, PMF
Procedia PDF Downloads 25525366 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 169