Search results for: mesenchymal stem cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4104

Search results for: mesenchymal stem cell

4074 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 286
4073 Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture

Authors: Melanie Macgregor-Ramiasa, Isabel Hopp, Patricia Murray, Krasimir Vasilev

Abstract:

Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support.

Keywords: nanotopography, stem cells, differentiation, plasma polymer, oxazoline, gold nanoparticles

Procedia PDF Downloads 252
4072 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 468
4071 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence

Procedia PDF Downloads 210
4070 Epigenomic Analysis of Lgr5+ Stem Cells in Gastrointestinal Tract

Authors: Hyo-Min Kim, Seokjin Ham, Mi-Joung Yoo, Minseon Kim, Tae-Young Roh

Abstract:

The gastrointestinal (GI) tract of most animals, including murine, is highly compartmentalized epithelia which also provide distinct different functions of its own tissue. Nevertheless, these epithelia share certain characteristics that enhance immune responses to infections and maintain the barrier function of the intestine. GI tract epithelia also undergo regeneration not only in homeostatic conditions but also in a response to the damage. A full turnover of the murine gastrointestinal epithelium occurs every 4-5 day, a process that is regulated and maintained by a minor population of Lgr5+ adult stem cell that commonly conserved in the bottom of crypts through GI tract. Maintenance of the stem cell is somehow regulated by epigenetic factors according to recent studies. Chromatin vacancy, remodelers, histone variants and histone modifiers could affect adult stem cell fate. In this study, Lgr5-EGFP reporter mouse was used to take advantage of exploring the epigenetic dynamics among Lgr5 positive mutual stem cell in GI tract. Cells were isolated by fluorescence-activated cell sorting (FACS), gene expression levels, chromatin accessibility changes and histone modifications were analyzed. Some notable chromatin structural related epigenetic variants were detected. To identify the overall cell-cell interaction inside the stem cell niche, an extensive genome-wide analysis should be also followed. According to the results, nevertheless, we expected a broader understanding of cellular niche maintaining stem cells and epigenetic barriers through conserved stem cell in GI tract. We expect that our study could provide more evidence of adult stem cell plasticity and more chances to understand each stem cell that takes parts in certain organs.

Keywords: adult stem cell, epigenetics, LGR5 stem cell, gastrointestinal tract

Procedia PDF Downloads 207
4069 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics

Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun

Abstract:

Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.

Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties

Procedia PDF Downloads 534
4068 Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics

Authors: Haiyan Wang, Dongyun Wang, Yongyong Yan, Richard T. Jaspers, Gang Wu

Abstract:

Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering.

Keywords: 3d printing, adipose-derived stem cells, bone tissue engineering, histatin-1, osteogenesis

Procedia PDF Downloads 34
4067 Wound Healing Potential and Comparison of Mummy Substance Effect on Adipose and Wharton’s Jelly-Derived Mesenchymal Stem Cells Co-Cultured with Human Fibroblast

Authors: Sepideh Hassanpour Khodaei

Abstract:

Background/Objectives: The purpose of this study is to evaluate the effect of mummy substances on two issues of proliferation and production of matrix protein synthesis in wound healing. Methods: The methodology used for this aim involves isolating mesenchymal stem cells and human fibroblasts procured at Pastor Institute, Iran. The cells were treated with mummy substances separately and co-cultured between ASCs and WJSCs, and fibroblasts. Proliferation was assessed by Ki67 method in monolayer conditions. Synthesis of components of extracellular matrix (ECM) such as collagen type I, type III, and fibronectin 1 (FN1) was determined by qPCR. Results: The effects of adipocyte stem cells (ASCs), Wharton Jelly Stem Cells (WJSCs), and Mummy material on fibroblast proliferation and migration were evaluated. The present finding underlined the importance of Mummy material, ASCs, and WJSCs in the proliferation and migration of fibroblast cells. Furthermore, the expression of collagen I, III, and FN1 was increased in the presence of the above material and cells. Conclusion: This study presented an effective in vitro method for the healing process. Hence, the prospect of utilizing Mummy material and stem cell-based therapies in wound healing as a therapeutic approach is promising.

Keywords: mummy material, wound healing, adipose tissue, Wharton’s jelly

Procedia PDF Downloads 89
4066 Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells

Authors: Abbas Jafarizad, Duygu Ekinci

Abstract:

In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary.

Keywords: mitoxantrone, magnetite, magnetic graphene oxide, MTT assay, mesenchymal stem cells

Procedia PDF Downloads 249
4065 Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine

Authors: Tong Ming Liu

Abstract:

Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine.

Keywords: mesenchymal stem cell, novel transcription factor, stemness, gene therapy, cartilage repair, signaling pathway

Procedia PDF Downloads 29
4064 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells

Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim

Abstract:

Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.

Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique

Procedia PDF Downloads 192
4063 The Ability of Adipose Derived Mesenchymal Stem Cells for Diabetes Mellitus Type 2 Treatment

Authors: Purwati, Sony Wibisono, Ari Sutjahjo, Askandar T. J., Fedik A. Rantam

Abstract:

Diabetes mellitus type 2 (T2DM), also known as hyperglycemia, results from insulin resistance and relative insulin deficiency. Diabetes mellitus is the main cause of premature death, particularly among individuals under the age of 70 years old. Mesenchymal stem cells (MSCs) can release bioactive molecules that promote tissue repair and regeneration. Hence, in this research, we evaluated the potential of autologous adipose-derived mesenchymal stem cells (AD-MSCs) in 40 patients of phase I clinical trial in T2DM with various ages between 30-79 years. AD-MSCs are transferred through catheterization. MSCs were validated by measures of CD105+ and CD34- expression. The result showed that after AD-MSCs transplantation, blood glucose levels (fasting and 2-hour postprandial) and insulin levels were significantly decreasing. Besides that, the level of HbA1c significantly decreased after three months of AD-MSCs injection and increasing level of c-peptide after injection. Thus, we conclude that AD-MSCs injection has the potential for T2DM therapy.

Keywords: glucose, hyperglycemia, MSCs, T2DM

Procedia PDF Downloads 55
4062 Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy

Authors: Ankush M. Dewle, Suditi Bhattacharya, Prachi R. Abhang, Savita Datar, Ajay J. Jog, Rupesh K. Srivastava, Geetanjali Tomar

Abstract:

Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient.

Keywords: bone regeneration, cell therapy, senescence, stem cell

Procedia PDF Downloads 160
4061 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors

Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova

Abstract:

Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.

Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF

Procedia PDF Downloads 301
4060 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells

Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda

Abstract:

We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells

Procedia PDF Downloads 396
4059 Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study

Authors: Vijaya Madhuri Devraj, Swarnalatha Guditi, Kiran Kumar Bokara, Gangadhar Taduri

Abstract:

Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection.

Keywords: graft rejection, graft tolerance, macrophage polarization, mesenchymal stem cells, regulatory T cells, transplant immunology

Procedia PDF Downloads 93
4058 Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate

Authors: Lay Poh Tan, Chor Yong Tay, Haiyang Yu

Abstract:

Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level.

Keywords: micro-contact printing, polymer substrate, cell-material interaction, stem cell differentiation

Procedia PDF Downloads 149
4057 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 400
4056 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 237
4055 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells

Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song

Abstract:

Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.

Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells

Procedia PDF Downloads 256
4054 Treatment of Full-Thickness Rotator Cuff Tendon Tear Using Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Polydeoxyribonucleotides in a Rabbit Model

Authors: Sang Chul Lee, Gi-Young Park, Dong Rak Kwon

Abstract:

Objective: The aim of this study was to investigate regenerative effects of ultrasound (US)-guided injection with human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and/or polydeoxyribonucleotide (PDRN) injection in a chronic traumatic full-thickness rotator cuff tendon tear (FTRCTT) in a rabbit model. Material and Methods: Rabbits (n = 32) were allocated into 4 groups. After a 5-mm sized FTRCTT just proximal to the insertion site on the subscapularis tendon was created by excision, the wound was immediately covered by silicone tube to prevent natural healing. After 6 weeks, 4 injections (0.2 mL normal saline, G1; 0.2 mL PDRN, G2; 0.2 mL UCB-MSCs, G3; and 0.2 mL UCB-MSCs with 0.2ml PDRN, G4) were injected into FTRCTT under US guidance. We evaluated gross morphologic changes on all rabbits after sacrifice. Masson’s trichrome, anti-type 1 collagen antibody, bromodeoxyuridine, proliferating cell nuclear antigen, vascular endothelial growth factor and platelet endothelial cell adhesion molecule stain were performed to evaluate histological changes. Motion analysis was also performed. Results: The gross morphologic mean tendon tear size in G3 and 4 was significantly smaller than that of G1 and 2 (p < .05). However, there were no significant differences in tendon tear size between G3 and 4. In G4, newly regenerated collagen type 1 fibers, proliferating cells activity, angiogenesis, walking distance, fast walking time, and mean walking speed were greater than in the other three groups on histological examination and motion analysis. Conclusion: Co-injection of UCB-MSCs and PDRN was more effective than UCB-MSCs injection alone in histological and motion analysis in a rabbit model of chronic traumatic FTRCTT. However, there was no significant difference in gross morphologic change of tendon tear between UCB-MSCs with/without PDRN injection. The results of this study regarding the combination of UCB-MSCs and PDRN are worth additional investigations.

Keywords: mesenchymal stem cell, umbilical cord, polydeoxyribonucleotides, shoulder, rotator cuff, ultrasonography, injections

Procedia PDF Downloads 168
4053 Analysis of Adipose Tissue-Derived Mesenchymal Stem Cells under Atherosclerosis Microenvironment

Authors: Do Khanh Vy, Vuong Cat Khanh, Osamu Ohneda

Abstract:

During atherosclerosis (AS) progression, perivascular adipose tissue-derived mesenchymal stem cells (PVAT-MSCs) are exposed to the hypoxic environment due to the oxygenic deprivation which might influence the adipose tissue-derived mesenchymal stem cells (AT-MSCs) function. Additionally, it has been reported that the angiogenic ability of subcutaneous AT-MSCs (SAT-MSCs) was impaired in the AS patients. However, up to now, the effects of AS on the characteristics and function of PVAT-MSCs have not been clarified yet. In the present study, we analyzed the AS microenvironment effects on the characteristics and function of AT-MSCs. We found that there was no significant difference in cellular morphology and differentiation ability between SAT-MSCs and PVAT-MSCs in AS patients. However, the proliferation of AS-derived PVAT-MSCs was less than those of AS-derived SAT-MSCs. Importantly, the migration of AS-derived PVAT-MSCs was faster than AS-derived SAT-MSCs. Of note, AS-derived PVAT-MSCs showed the upregulation of SDF1, which is related to the homing, and VEGF, which is related to the angiogenesis compared to those of AS-derived SAT-MSCs. Consistent with these results, AS-derived PVAT-MSCs showed the higher ability to recruit EPCs and ECs than AS-derived SAT-MSCs. In addition, EPCs and ECs which cultured in the presence of AS-derived PVAT-MSC conditioned medium showed the higher angiogenic function of the tube formation compared to those cultured in AS-derived SAT-MSC conditioned medium. This result suggests that the higher paracrine effects of AS-derived PVAT-MSCs support the angiogenic function of the target cells. Our data showed the different characteristics and functions of AT-MSCs derived from different sources of tissues. Under the AS microenvironment, it seems that the characteristics and functions of PVAT-MSCs might reflect the progression of AS. Further study will be necessary to clarify the mechanism in the future.

Keywords: atherosclerosis, mesenchymal stem cells, perivascular adipose tissue, subcutaneous adipose tissue

Procedia PDF Downloads 136
4052 Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK

Authors: Bhawna Chandravanshi, Ramesh Bhonde

Abstract:

In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein.

Keywords: hypoxia, islet-like cell aggregates, inflammatory cytokines, oxidative stress

Procedia PDF Downloads 237
4051 Superiority of Bone Marrow Derived-Osteoblastic Cells (ALLOB®) over Bone Marrow Derived-Mesenchymal Stem Cells

Authors: Sandra Pietri, Helene Dubout, Sabrina Ena, Candice Hoste, Enrico Bastianelli

Abstract:

Bone Therapeutics is a bone cell therapy company addressing high unmet medical needs in the field of bone fracture repair, more specifically in non-union and delayed-union fractures where the bone repair process is impaired. The company has developed a unique allogeneic osteoblastic cell product (ALLOB®) derived from bone marrow which is currently tested in humans in the indication of delayed-union fractures. The purpose of our study was to directly compare ALLOB® vs. non-differentiated mesenchymal stem cells (MSC) for their in vitro osteogenic characteristics and their in vivo osteogenic potential in order to determine which cellular type would be the most adapted for bone fracture repair. Methods: Healthy volunteers’ bone marrow aspirates (n=6) were expended (i) into BM-MSCs using a complete MSC culture medium or (ii) into ALLOB® cells according to its manufacturing process. Cells were characterized in vitro by morphology, immunophenotype, gene expression and differentiation potential. Additionally, their osteogenic potential was assessed in vivo in the subperiosteal calvaria bone formation model in nude mice. Results: The in vitro side-by-side comparison studies showed that although ALLOB® and BM-MSC shared some common general characteristics such as the 3 minimal MSC criteria, ALLOB® expressed significantly higher levels of chondro/osteoblastic genes such as BMP2 (fold change (FC) > 100), ALPL (FC > 12), CBFA1 (FC > 3) and differentiated significantly earlier than BM-MSC toward the osteogenic lineage. Moreover the bone formation model in nude mice demonstrated that used at the same cellular concentration, ALLOB® was able to induce significantly more (160% vs.107% for control animals) bone formation than BM-MSC (118% vs. 107 % for control animals) two weeks after administration. Conclusion: Our side-by-side comparison studies demonstrated that in vitro and in vivo, ALLOB® displays superior osteogenic capacity to BM-MScs and is therefore a better candidate for the treatment of bone fractures.

Keywords: gene expression, histomorphometry, mesenchymal stem cells, osteogenic differentiation potential, preclinical

Procedia PDF Downloads 309
4050 Therapeutic Role of T Subpopulations Cells (CD4, CD8 and Treg (CD25 and FOXP3+ Cells) of UC MSC Isolated from Three Different Methods in Various Disease

Authors: Kumari Rekha, Mathur K Dhananjay, Maheshwari Deepanshu, Nautiyal Nidhi, Shubham Smriti, Laal Deepika, Sinha Swati, Kumar Anupam, Biswas Subhrajit, Shiv Kumar Sarin

Abstract:

Background: Mesenchymal stem cells are multipotent stem cells derived from mesoderm and are used for therapeutic purposes because of their self-renewal, homing capacity, Immunomodulatory capability, low immunogenicity and mitochondrial transfer signaling. MSCs have the ability to regulate the mechanism of both innate as well as adaptive immune responses through the modulation of cellular response and the secretion of inflammatory mediators. Different sources of MSC are UC MSC, BM MSC, Dental Pulp, and Adipose MSC. The most frequent source used is umbilical cord tissue due to its being easily available and free of limitations of collection procedures from respective hospitals. The immunosuppressive role of MSCs is particularly interesting for clinical use since it confers resistance to rejection by the host immune response. Methodology: In this study, T helper cells (TH4), Cytotoxic T cells (CD-8), immunoregulatory cells (CD25 +FOXP3+) are compared from isolated MSC from three different methods, UC Dissociation Kit (Miltenyi), Explant Culture and Collagenase Type-IV. To check the immunomodulatory property, these MSCs were seeded with PBMC(Coculture) in CD3 coated 24 well plates. Cd28 antibody was added in coculture for six days. The coculture was analyzed in FACS Verse flow cytometry. Results: From flow cytometry analysis of coculture, it found that All over T helper cells (CD4+) number p<0.0264 increases in (All Enzymes) MSC rather than explant MSC(p>0.0895) as compared to Collagenase(p>0.7889) in a coculture of Activated T cell and Mesenchymal Stem Cell. Similar T reg cells (CD25+, FOXP3+) expression p<0.0234increases in All Enzymes), decreases in Explant and Collagenase. Experiments have shown that MSCs can also directly prevent the cytotoxic activity of CD8 lymphocytes mainly by blocking their proliferation rather than by inhibiting the cytotoxic effect. And promoting the t-reg cells, which helps in the mediation of immune response in various diseases. Conclusion: MSC suppress Cytotoxic CD8 T cell and Enhance immunoregulatory T reg (CD4+, CD25+, FOXP3+) Cell expression. Thus, MSC maintains a proper balance(ratio) between CD4 T cells and Cytotoxic CD8 T cells.

Keywords: MSC, disease, T cell, T regulatory

Procedia PDF Downloads 83
4049 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth

Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon

Abstract:

Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.

Keywords: SHEDs, IL-6, cell differentiations, dental pulp

Procedia PDF Downloads 149
4048 Application of Mesenchymal Stem Cells in Diabetic Therapy

Authors: K. J. Keerthi, Vasundhara Kamineni, A. Ravi Shanker, T. Rammurthy, A. Vijaya Lakshmi, Q. Hasan

Abstract:

Pancreatic β-cells are the predominant insulin-producing cell types within the Islets of Langerhans and insulin is the primary hormone which regulates carbohydrate and fat metabolism. Apoptosis of β-cells or insufficient insulin production leads to Diabetes Mellitus (DM). Current therapy for diabetes includes either medical management or insulin replacement and regular monitoring. Replacement of β- cells is an attractive treatment option for both Type-1 and Type-2 DM in view of the recent paper which indicates that β-cells apoptosis is the common underlying cause for both the Types of DM. With the development of Edmonton protocol, pancreatic β-cells allo-transplantation became possible, but this is still not considered as standard of care due to subsequent requirement of lifelong immunosuppression and the scarcity of suitable healthy organs to retrieve pancreatic β-cell. Fetal pancreatic cells from abortuses were developed as a possible therapeutic option for Diabetes, however, this posed several ethical issues. Hence, in the present study Mesenchymal stem cells (MSCs) were differentiated into insulin producing cells which were isolated from Human Umbilical cord (HUC) tissue. MSCs have already made their mark in the growing field of regenerative medicine, and their therapeutic worth has already been validated for a number of conditions. HUC samples were collected with prior informed consent as approved by the Institutional ethical committee. HUC (n=26) were processed using a combination of both mechanical and enzymatic (collagenase-II, 100 U/ml, Gibco ) methods to obtain MSCs which were cultured in-vitro in L-DMEM (Low glucose Dulbecco's Modified Eagle's Medium, Sigma, 4.5 mM glucose/L), 10% FBS in 5% CO2 incubator at 37°C. After reaching 80-90% confluency, MSCs were characterized with Flowcytometry and Immunocytochemistry for specific cell surface antigens. Cells expressed CD90+, CD73+, CD105+, CD34-, CD45-, HLA-DR-/Low and Vimentin+. These cells were differentiated to β-cells by using H-DMEM (High glucose Dulbecco's Modified Eagle's Medium,25 mM glucose/L, Gibco), β-Mercaptoethanol (0.1mM, Hi-Media), basic Fibroblast growth factor (10 µg /L,Gibco), and Nicotinamide (10 mmol/L, Hi-Media). Pancreatic β-cells were confirmed by positive Dithizone staining and were found to be functionally active as they released 8 IU/ml insulin on glucose stimulation. Isolating MSCs from usually discarded, abundantly available HUC tissue, expanding and differentiating to β-cells may be the most feasible cell therapy option for the millions of people suffering from DM globally.

Keywords: diabetes mellitus, human umbilical cord, mesenchymal stem cells, differentiation

Procedia PDF Downloads 237
4047 Usage of Cord Blood Stem Cells of Asphyxia Infants for Treatment

Authors: Ahmad Shah Farhat

Abstract:

Background: Prenatal asphyxia or birth asphyxia is the medical situation resulting from a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Human umbilical cord blood (UCB) is a well-established source of hematopoietic stem/progenitor cells (HSPCs) for allogeneic stem cell transplantation. These can be used clinically to care for children with malignant diseases. Low O2 can cause in proliferation and differentiation of stem cells. Method: the cord blood of 11 infants with 3-5 Apgar scores or need to cardiac pulmonary Resuscitation as an asphyxia group and ten normal infants with more than 8 Apgar scores as the normal group was collected, and after isolating hematopoietic stem cells, the cells were cultured in enriched media for 14 days to compare the numbers of colonies by microscope. Results: There was a significant difference in the number of RBC precursor colonies (red colonies) in cultured media with 107 cord blood hematopoietic stem cells of infants who were exposed to hypoxemia in two wells of palate. There was not a significant difference in the number of white cell colonies in the two groups in the two wells of the plate. Conclusion: Hypoxia in the perinatal period can cause the increase of hematopoietic stem cells of cord blood, special red precursor stem cells in vitro, like an increase of red blood cells in the body when exposed to low oxygen conditions. Thus, it will be usable.

Keywords: asphyxia, neonre, stem cell, red cell

Procedia PDF Downloads 43
4046 The Effect of Mesenchymal Stem Cells on Full Thickness Skin Wound Healing in Albino Rats

Authors: Abir O. El Sadik

Abstract:

Introduction: Wound healing involves the interaction of multiple biological processes among different types of cells, intercellular matrix and specific signaling factors producing enhancement of cell proliferation of the epidermis over dermal granulation tissue. Several studies investigated multiple strategies to promote wound healing and to minimize infection and fluid losses. However, burn crisis, and its related morbidity and mortality are still elevated. The aim of the present study was to examine the effects of mesenchymal stem cells (MSCs) in accelerating wound healing and to compare the most efficient route of administration of MSCs, either intradermal or systemic injection, with focusing on the mechanisms producing epidermal and dermal cell regeneration. Material and methods: Forty-two adult male Sprague Dawley albino rats were divided into three equal groups (fourteen rats in each group): control group (group I); full thickness surgical skin wound model, Group II: Wound treated with systemic injection of MSCs and Group III: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 2, 6, 10 and 15 for gross morphological evaluation and on day 10 and 15 for fluorescent, histological and immunohistochemical studies. Results: The wounds of the control group did not reach complete closure up to the end of the experiment. In MSCs treated groups, better and faster healing of wounds were detected more than the control group. Moreover, the intradermal route of administration of stem cells increased the rate of healing of the wounds more than the systemic injection. In addition, the wounds were found completely healed by the end of the fifteenth day of the experiment in all rats of the group injected intradermally. Microscopically, the wound areas of group III were hardly distinguished from the adjacent normal skin with complete regeneration of all skin layers; epidermis, dermis, hypodermis and underlying muscle layer. Fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas surrounded by different arrangement of collagen fibers with a significant increase in their area percent were recorded in this group more than in other groups. Conclusion: MSCs accelerate the healing process of wound closure. The route of administration of MSCs has a great influence on wound healing as intradermal injection of MSCs was more effective in enhancement of wound healing than systemic injection.

Keywords: intradermal, mesenchymal stem cells, morphology, skin wound, systemic injection

Procedia PDF Downloads 179
4045 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 280