Search results for: low temperature stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10470

Search results for: low temperature stress

10440 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 174
10439 Intraspecific Response of the Ciliate Tetrahymena thermophila to Copper and Thermal Stress

Authors: Doufoungognon Carine Kone

Abstract:

Heavy metals present in large quantities in ecosystems can alter biological and cellular functions and disrupt trophic functions. However, their toxicity can change according to thermal conditions, as toxicity depends on their bioavailability and thermal optimum of organisms. Organisms can develop different tolerance strategies to maintain themselves in a stressful environment, but these strategies are often studied in a single-stressor context. This study evaluates the responses of the ciliate Tetrahymena thermophila to copper, high temperature, and their interaction. Six genotypes were exposed to a gradient of copper concentrations ranging from 0 to 350mg/L in synthetic media at three temperatures: 15°C, 23°C, and 31°C. Cell density, cell shape and size (and their variance), swimming speed and trajectory, and copper uptake rate were measured. Depending on the genotype, swimming speed, trajectory, and cell size were highly affected by stress gradients. One gets bigger, while two genotypes get smaller and the other remain unchanged. Some genotypes swam less rapidly, while others speed up as copper and temperature increased. Concerning copper uptake, the two genotypes accumulating the best and the worst, whatever the copper concentration or temperature, were also those that had the highest densities. Finally, very few temperature x copper interactions were observed on phenotypic parameters. The diversity of phenotypic responses revealed in this study reflects the existence of divergent strategies adopted by Tetrahymena thermophila to resist to copper and thermal stress, which suggests an important role of intraspecific variability in biodiversity response to environmental stress. One general and the surprising pattern was a global absence of interactive effects between copper and high temperature exposure on the observed phenotypic responses.

Keywords: ciliate, copper, intraspecific variability, phenotype, temperature, tolerance, multiple stressors

Procedia PDF Downloads 76
10438 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul

Abstract:

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic

Procedia PDF Downloads 501
10437 Study on the Forging of AISI 1015 Spiral Bevel Gear by Finite Element Analysis

Authors: T. S. Yang, J. H. Liang

Abstract:

This study applies the finite element method (FEM) to predict maximum forging load, effective stress distribution, effective strain distribution, workpiece temperature temperature in spiral bevel gear forging of AISI 1015. Maximum forging load, effective stress, effective strain, workpiece temperature are determined for different process parameters, such as modules, number of teeth, helical angle and workpiece temperature of the spiral bevel gear hot forging, using the FEM. Finally, the prediction of the power requirement for the spiral bevel gear hot forging of AISI 1015 is determined.

Keywords: spiral bevel gear, hot forging, finite element method

Procedia PDF Downloads 478
10436 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 340
10435 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 327
10434 Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress

Authors: Maurizio E. Picarella, Ludovica Fumelli, Francesca Siligato, Andrea Mazzucato

Abstract:

Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties.

Keywords: fruit set, heat stress, solanum lycopersicum L., style exsertion, tomato

Procedia PDF Downloads 131
10433 Static Relaxation of Glass Fiber Reinforced Pipes

Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem

Abstract:

Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.

Keywords: GRP, sandwich composite material, static relaxation, stress relief

Procedia PDF Downloads 626
10432 Habits for Teenagers to Remain Unruffled by Stress When They Enter the Workforce

Authors: Sandeep Nath

Abstract:

There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this in our teenage years, we can be prepared to prevent harmful stress from escalating and ruining health, physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies are presented of teenagers who have been equipped with both capability and capacity to handle their situations and environments independently.

Keywords: habits, renewalism, stress, teenagers

Procedia PDF Downloads 80
10431 Effects of Operating Conditions on Creep Life of Industrial Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Eso Archibong

Abstract:

The creep life of an industrial gas turbine is determined through a physics-based model used to investigate the high pressure temperature (HPT) of the blade in use. A performance model was carried out via the Cranfield University TURBOMATCH simulation software to size the blade and to determine the corresponding stress. Various effects such as radial temperature distortion factor, turbine entry temperature, ambient temperature, blade metal temperature, and compressor degradation on the blade creep life were investigated. The output results show the difference in creep life and the location of failure along the span of the blade enabling better-informed advice for the gas turbine operator.

Keywords: creep, living, performance, degradation

Procedia PDF Downloads 402
10430 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures

Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.

Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis

Procedia PDF Downloads 419
10429 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations

Authors: Astghik R. Sukiasyan

Abstract:

Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.

Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata

Procedia PDF Downloads 258
10428 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating

Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.

Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis

Procedia PDF Downloads 342
10427 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)

Authors: Ali Haghiri

Abstract:

This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.

Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion

Procedia PDF Downloads 161
10426 Mindful Habits to Remain Unruffled by Stress in the Workplace

Authors: Sandeep Nath

Abstract:

There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this through mindfulness of body, mind, and spirit, we can be prepared to prevent harmful stress from escalating and ruining health; physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies presented of how mindfulness has equipped individuals with both capability and capacity to handle their situations and environments despite the odds.

Keywords: habits, mindfulness, renewalism, stress

Procedia PDF Downloads 171
10425 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 197
10424 Cellular Automata Modelling of Titanium Alloy

Authors: Jyoti Jha, Asim Tewari, Sushil Mishra

Abstract:

The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample.

Keywords: compression test, Cellular automata, DEFORM , DRX

Procedia PDF Downloads 301
10423 Effect of Different Levels of Vitamin E and L-Carnitine on Performance of Broiler Chickens Under Heat Stress

Authors: S. Salari, M. A. Shirali, S. Tabatabaei, M. Sari, R. Jahanian

Abstract:

This study was conducted to investigate the effect of different levels of vitamin E and L-carnitine on performance, blood parameters and immune responses of broilers under heat stress. For this purpose 396 one- day- old Ross 308 broiler chicks were randomly distributed between 9 treatments with 4 replicates (11 birds in each replicate). Dietary treatments consisted of three levels of vitamin E (0, 100 and 200 mg/ kg) and three levels of L-carnitine (0, 50 and 100 mg/ kg) that was done in completely randomized design with 3X3 factorial arrangement for 42 days. During the first three weeks, chickens were reared at normal temperature. From the beginning of the fourth week, all chickens were maintenance in a temperature range from 24-38 ° C for heat stress. Performance parameters including average feed intake, weight gain and feed conversion ratio were recorded weekly. The results showed that the levels of vitamin E had no significant effect on feed intake, weight gain and feed conversion ratio during the experiment. The use of L-carnitine decreased feed intake during the experiment (P < 0/05). But did not affect average daily gain and feed conversion ratio. Also, there was not significant interaction between vitamin E and L-carnitine for performance parameters except average daily gain during the starter period. The results of this study indicate that the use of different levels of vitamin E and L-carnitine under heat stress did not affected performance parameters of broiler chickens.

Keywords: broiler, heat stress, l-carnitine, performance

Procedia PDF Downloads 482
10422 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy

Authors: Tao Yang, Yongli Zhao

Abstract:

Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.

Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking

Procedia PDF Downloads 190
10421 Grain Growth in Nanocrystalline and Ultra-Fine Grained Materials

Authors: Haiming Wen

Abstract:

Grain growth is an important and consequential phenomenon that generally occurs in the presence of thermal and/or stress/strain fields. Thermally activated grain growth has been extensively studied and similarly, there are numerous experimental and theoretical studies published describing stress-induced grain growth in single-phase materials. However, studies on grain growth during the simultaneous presence of an elevated temperature and an external stress are very limited, and moreover, grain growth phenomena in materials containing second-phase particles and solute segregation at GBs have received limited attention. This lecture reports on a study of grain growth in the presence of second-phase particles and solute/impurity segregation at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via consolidation of mechanically milled powders. The mechanisms underlying the grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and geometric dynamic recrystallization, while discontinuous dynamic recrystallization was not operative. A theoretical framework that incorporates the influence of second-phase particles and solute/impurity segregation at GBs on grain growth in presence of both elevated temperature and external stress is formulated and discussed. The effect of second-phase particles and solute/impurity segregation at GBs on GB migration and grain rotation was quantified using the proposed theoretical framework, indicating that both second-phase particles and solutes/impurities segregated GBs reduce the velocities of GB migration and grain rotation as compared to those in commercially pure Al. Our results suggest that grain growth predicted by the proposed theoretical framework is in agreement with experimental results. Hence, the developed theoretical framework can be applied to quantify grain growth in simultaneous presence of external stress, elevated temperature, GB segregation and second-phase particles, or in presence of one or more of the aforementioned factors.

Keywords: nanocrystalline materials, ultra-fine grained materials, grain growth, grain boundary migration, grain rotation

Procedia PDF Downloads 326
10420 Organic Thin-Film Transistors with High Thermal Stability

Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk

Abstract:

Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.

Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology

Procedia PDF Downloads 349
10419 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites

Authors: Ki-Ho Nam, Haksoo Han

Abstract:

Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.

Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance

Procedia PDF Downloads 525
10418 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle

Procedia PDF Downloads 295
10417 Characterization of Filled HNBR Elastomers for Sealing Application in Cold Climate Areas

Authors: Anton G. Akulichev, Avinash Tiwari, Ben Alcock, Andreas Echtermeyer

Abstract:

Low temperatures are known to pose a major threat for polymers; many are prone to excessive stiffness or even brittleness. There is a technology gap between the properties of existing elastomeric sealing materials and the properties needed for service in extremely cold regions. Moreover, some aspects of low temperature behaviour of rubber are not thoroughly studied and understood. The paper presents results of laboratory testing of a conventional oilfield HNBR (hydrogenated nitrile butadiene rubber) elastomer at low climatic temperatures above and below its glass transition point, as well as the performance of some filled HNBR formulations. Particular emphasis in the experiments is put on rubber viscoelastic characteristics studied by Dynamic Mechanical Analysis (DMA) and quasi-static mechanical testing results at low temperatures. As demonstrated by the stress relaxation and DMA experiments the transition region near Tg of the studied compound has the most striking features, like rapid stress relaxation, as compared to the glassy and rubbery plateau. In addition the quasi-static experiments show that molecular movement below Tg is not completely frozen, but rather evident and manifested in a certain stress decay as well. The effect of temperature and filler additions on typical mechanical and other properties of the materials is also discussed.

Keywords: characterization, filled elastomers, HNBR, low temperature

Procedia PDF Downloads 314
10416 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder

Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian

Abstract:

Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.

Keywords: titanium, metal injection moulding, mechanical properties, scaffolds

Procedia PDF Downloads 208
10415 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.

Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station

Procedia PDF Downloads 386
10414 Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress

Authors: Desierin Rodrin, Magdalena Alcantara, Cristina Olo

Abstract:

The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers.

Keywords: broiler growth performance, heat stress, vitamin supplementation, vitamin A, vitamin C, vitamin E

Procedia PDF Downloads 293
10413 Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C

Authors: R. S. Rajpurohit, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region.

Keywords: asymmetric cyclic loading, ratcheting fatigue, mean stress, stress amplitude, stress rate, plastic strain

Procedia PDF Downloads 276
10412 Pet Care Monitoring with Arduino

Authors: Sathapath Kilaso

Abstract:

Nowadays people who live in the city tend to have a pet in order to relief the loneliness more than usual. It can be observed by the growth of the local pet industry. But the essentials of lifestyle of the urban people which is restricted by time and work might not allow the owner to take care of the pet properly. So this article will be about how to develop the prototype of pet care monitoring with Arduino Microcontroller. This prototype can be used to monitor the pet and its environment around the pet such as temperature (both pet’s temperature and outside temperature), humidity, food’s quantity, air’s quality and also be able to reduce the stress of the pet. This prototype can report the result back to the owner via online-channel such as website etc.

Keywords: pet care, Arduino Microcontroller, monitoring, prototype

Procedia PDF Downloads 360
10411 Experimental Study on Post-Fire Mechanical Properties of S235 Steel

Authors: Mahyar Maali, Merve Sagiroglu, Mahmut Kilic, Abdulkadir Cuneyt Aydin

Abstract:

In order to evaluate the residual strength of S235 (St37) steel structures after the fire, an experimental program was undertaken to investigate the post-fire mechanical properties. Tensile coupons taken from S235 sheets were exposed to varying temperatures as 200°C, 400°C, 600°C, and 800 °C. The samples were then allowed to cool down to ambient temperature before they were tested to failure. To obtain the mechanical properties of steels; tensile tests are performed, and the post-fire stress-strain curves are evaluated. The microstructures of the heat-treated specimens were examined by Scanning Electron Microscope (SEM). It is seen that morphology and size of the precipitates in the specimens change, as the heat increases. The modulus of elasticity decreases, and deformation increases with temperature. Energy dissipation decreases due to lower stress according to the stress-strain curves of the specimens. Especially, the mechanical properties were decreased compared with the pre-fire ones. As a result of the post-fire and pre-fire behavior of S235, a set of equations is evaluated to predict the mechanical properties after the fire. These types of equations may allow the structural and/or fire engineers to predict accurately the post-fire behavior of the buildings constructed with S235 type steel.

Keywords: post-fire behavior, stress-strain curves, experimental study, S235 steel

Procedia PDF Downloads 350