Search results for: identification partial rbcL
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4143

Search results for: identification partial rbcL

4113 Stochastic Analysis of Linux Operating System through Copula Distribution

Authors: Vijay Vir Singh

Abstract:

This work is focused studying the Linux operating system connected in a LAN (local area network). The STAR topology (to be called subsystem-1) and BUS topology (to be called subsystem-2) are taken into account, which are placed at two different locations and connected to a server through a hub. In the both topologies BUS topology and STAR topology, we have assumed n clients. The system has two types of failures i.e. partial failure and complete failure. Further, the partial failure has been categorized as minor and major partial failure. It is assumed that the minor partial failure degrades the sub-systems and the major partial failure make the subsystem break down mode. The system may completely fail due to failure of server hacking and blocking etc. The system is studied using supplementary variable technique and Laplace transform by using different types of failure and two types of repair. The various measures of reliability for example, availability of system, reliability of system, MTTF, profit function for different parametric values have been discussed.

Keywords: star topology, bus topology, blocking, hacking, Linux operating system, Gumbel-Hougaard family copula, supplementary variable

Procedia PDF Downloads 370
4112 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells

Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar

Abstract:

This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.

Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane

Procedia PDF Downloads 320
4111 Robotic Assisted vs Traditional Laparoscopic Partial Nephrectomy Peri-Operative Outcomes: A Comparative Single Surgeon Study

Authors: Gerard Bray, Derek Mao, Arya Bahadori, Sachinka Ranasinghe

Abstract:

The EAU currently recommends partial nephrectomy as the preferred management for localised cT1 renal tumours, irrespective of surgical approach. With the advent of robotic assisted partial nephrectomy, there is growing evidence that warm ischaemia time may be reduced compared to the traditional laparoscopic approach. There is still no clear differences between the two approaches with regards to other peri-operative and oncological outcomes. Current limitations in the field denote the lack of single surgeon series to compare the two approaches as other studies often include multiple operators of different experience levels. To the best of our knowledge, this study is the first single surgeon series comparing peri-operative outcomes of robotic assisted and laparoscopic PN. The current study aims to reduce intra-operator bias while maintaining an adequate sample size to assess the differences in outcomes between the two approaches. We retrospectively compared patient demographics, peri-operative outcomes, and renal function derangements of all partial nephrectomies undertaken by a single surgeon with experience in both laparoscopic and robotic surgery. Warm ischaemia time, length of stay, and acute renal function deterioration were all significantly reduced with robotic partial nephrectomy, compared to laparoscopic nephrectomy. This study highlights the benefits of robotic partial nephrectomy. Further prospective studies with larger sample sizes would be valuable additions to the current literature.

Keywords: partial nephrectomy, robotic assisted partial nephrectomy, warm ischaemia time, peri-operative outcomes

Procedia PDF Downloads 141
4110 Distribution of Putative Dopaminergic Neurons and Identification of D2 Receptors in the Brain of Fish

Authors: Shweta Dhindhwal

Abstract:

Dopamine is an essential neurotransmitter in the central nervous system of all vertebrates and plays an important role in many processes such as motor function, learning and behavior, and sensory activity. One of the important functions of dopamine is release of pituitary hormones. It is synthesized from the amino acid tyrosine. Two types of dopamine receptors, D1-like and D2-like, have been reported in fish. The dopamine containing neurons are located in the olfactory bulbs, the ventral regions of the pre-optic area and tuberal hypothalamus. Distribution of the dopaminergic system has not been studied in the murrel, Channa punctatus. The present study deals with identification of D2 receptors in the brain of murrel. A phylogenetic tree has been constructed using partial sequence of D2 receptor. Distribution of putative dopaminergic neurons in the brain has been investigated. Also, formalin induced hypertrophy of neurosecretory cells in murrel has been studied.

Keywords: dopamine, fish, pre-optic area, murrel

Procedia PDF Downloads 421
4109 [Keynote Talk]: Green Supply Chain Management Concepts Applied on Brazilian Animal Nutrition Industries

Authors: Laura G. Caixeta, Maico R. Severino

Abstract:

One of the biggest challenges that the industries find nowadays is to incorporate sustainability practices into its operations. The Green Supply Chain Management (GSCM) concept assists industries in such incorporation. For the full application of this concept is important that enterprises of a same supply chain have the GSCM practices coordinated among themselves. Note that this type of analyses occurs on the context of developed countries and sectors considered big impactors (as automotive, mineral, among others). The propose of this paper is to analyze as the GSCM concepts are applied on the Brazilian animal nutrition industries. The method used was the Case Study. For this, it was selected a supply chain relationship composed by animal nutrition products manufacturer (Enterprise A) and its supplier of animal waste, such as blood, viscera, among others (Enterprise B). First, a literature review was carried out to identify the main GSCM practices. Second, it was done an individual analysis of each one selected enterprise of the application of GSCM concept. For the observed practices, the coordination of each practice in this supply chain was studied. And, it was developed propose of GSCM applications for the practices no observed. The findings of this research were: a) the systematization of main GSCM practices, as: Internal Environment Management, Green Consumption, Green Design, Green Manufacturing, Green Marketing, Green Packaging, Green Procurement, Green Recycling, Life Cycle Analysis, Consultation Selection Method, Environmental Risk Sharing, Investment Recovery, and Reduced Transportation Time; b) the identification of GSCM practices on Enterprise A (7 full application, 3 partial application and 3 no application); c) the identification of GSCM practices on Enterprise B (2 full application, 2 partial application and 9 no application); d) the identification of how is the incentive and the coordination of the GSCM practices on this relationship by Enterprise A; e) proposals of application and coordination of the others GSCM practices on this supply chain relationship. Based on the study, it can be concluded that its possible apply GSCM on animal nutrition industries, and when occurs the motivation on the application of GSCM concepts by a supply chain echelon, these concepts are deployed for the others supply chain echelons by the coordination (orchestration) of the first echelon.

Keywords: animal nutrition industries, coordination, green supply chain management, supply chain management, sustainability

Procedia PDF Downloads 130
4108 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 95
4107 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 132
4106 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures

Keywords: optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia PDF Downloads 431
4105 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.

Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 336
4104 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 137
4103 Self-Tuning Robot Control Based on Subspace Identification

Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler

Abstract:

The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.

Keywords: auto tuning, balanced robot, closed loop identification, subspace identification

Procedia PDF Downloads 380
4102 Solving Stochastic Eigenvalue Problem of Wick Type

Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract:

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion

Procedia PDF Downloads 358
4101 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 433
4100 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 166
4099 Control of Stability for PV and Battery Hybrid System in Partial Shading

Authors: Weiying Wang, Qi Li, Huiwen Deng, Weirong Chen

Abstract:

The abrupt light change and uneven illumination will make the PV system get rid of constant output power, which will affect the efficiency of the grid connected inverter as well as the stability of the system. To solve this problem, this paper presents a strategy to control the stability of photovoltaic power system under the condition of partial shading of PV array, leading to constant power output, improving the capacity of resisting interferences. Firstly, a photovoltaic cell model considering the partial shading is established, and the backtracking search algorithm is used as the maximum power point to track algorithm under complex illumination. Then, the energy storage system based on the constant power control strategy is used to achieve constant power output. Finally, the effectiveness and correctness of the proposed control method are verified by the joint simulation of MATLAB/Simulink and RTLAB simulation platform.

Keywords: backtracking search algorithm, constant power control, hybrid system, partial shading, stability

Procedia PDF Downloads 297
4098 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus

Abstract:

In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 525
4097 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 448
4096 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control

Authors: A. Mansouri, F. Krim

Abstract:

This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.

Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation

Procedia PDF Downloads 379
4095 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 75
4094 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 323
4093 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 105
4092 Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems

Authors: L. Kiefer, C. Richter, G. Reinhart

Abstract:

The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification.

Keywords: agent systems, autonomous control, handling systems, identification

Procedia PDF Downloads 177
4091 Partial Differential Equation-Based Modeling of Brain Response to Stimuli

Authors: Razieh Khalafi

Abstract:

The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.

Keywords: brain, stimuli, partial differential equation, response, EEG signal

Procedia PDF Downloads 554
4090 Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils

Authors: K. E. Daryani, H. Mohamad

Abstract:

Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio.

Keywords: Safety, Probability of Failure, Reliability, Infinite Slopes, Sand.

Procedia PDF Downloads 574
4089 Frequency Identification of Wiener-Hammerstein Systems

Authors: Brouri Adil, Giri Fouad

Abstract:

The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.

Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science

Procedia PDF Downloads 536
4088 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: M. Tiachachat, M. Mihoubi

Abstract:

The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions

Keywords: 2-associated r-Stirling numbers, the exponential partial Bell polynomials, generating function, combinatorial interpretation

Procedia PDF Downloads 110
4087 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516
4086 Evaluation of the Patient Identification Process in Healthcare Facilities in a Brazilian City Area

Authors: Carmen Silvia Gabriel, Maria de Fátima Paiva Brito, Mariane de Paula Candido, Vanessa Barato Oliveira

Abstract:

Patient identification is a necessary practice to ensure patient safety in any healthcare environment, including emergency care units, test laboratories, home care and clinics. The present study aimed to provide evidence that can effectively contribute to practices concerning patient identification. Its objective was to investigate patient identification in basic healthcare units through patient safety standards. To do so, a descriptive and non-experimental research outline study was carried out to inquire how patient identification takes place in a particular situation. All technical manager nurses from the chosen healthcare facilities were included in the sample for the study. Data was collected in September of 2014 after approval from the Committee of Ethics. All researched institutions fit the same profile: they’re public facilities for general care with observation beds. None of them has a wristband identification protocol or policy. Only one institution mentioned using some kind of visual identification; namely, body tags separated by colors according to the type of care, but it still does not apply the recommended tags by the Brazilian Ministry of Health. This study allowed the authors to acknowledge how important the commitment from the whole healthcare team in the patient identification process is and also acknowledge how necessary it is to implement institutional policies that may aid the healthcare units in this area to promote a quality and safe patient care.

Keywords: patient safety, identification, nursing, emergency care units

Procedia PDF Downloads 406
4085 Use of Digital Forensics for Sex Determination by Nasal Index

Authors: Ashwini Kumar, Vinod Nayak, Shankar M. Bakkannavar

Abstract:

The identification of humans is important in forensic investigations not only in living but also in dead, especially in cases of mass disorders. The procedure followed in dead known as post-mortem identification is a challenging task for the forensic pathologist. However, it is mandatory in terms of the law to fulfill the social norms. Many times, due to mutilation of body parts, the normal methods of identification using skeletal remains cannot be used in the process of identification. In such cases, the intact components of the skeletal remains or bony parts play an important role in identification. In these situations, digital forensics can come to our rescue. The authors hereby made a study for determination of sex based on nasal index by using (Big Bore 16 Slice) Multidetector Computed Tomography 2D Scans. The results are represented as a poster.

Keywords: sex determination, multidetector computed tomography, nasal index, digital forensic

Procedia PDF Downloads 398
4084 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 256