Search results for: country's image components
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10333

Search results for: country's image components

10303 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 78
10302 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 407
10301 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 436
10300 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: integral images, differential images, differential filters, image fusion

Procedia PDF Downloads 506
10299 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform

Authors: Ali A. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 497
10298 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format

Procedia PDF Downloads 377
10297 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
10296 The Persistence of Abnormal Return on Assets: An Exploratory Analysis of the Differences between Industries and Differences between Firms by Country and Sector

Authors: José Luis Gallizo, Pilar Gargallo, Ramon Saladrigues, Manuel Salvador

Abstract:

This study offers an exploratory statistical analysis of the persistence of annual profits across a sample of firms from different European Union (EU) countries. To this end, a hierarchical Bayesian dynamic model has been used which enables the annual behaviour of those profits to be broken down into a permanent structural and a transitory component, while also distinguishing between general effects affecting the industry as a whole to which each firm belongs and specific effects affecting each firm in particular. This breakdown enables the relative importance of those fundamental components to be more accurately evaluated by country and sector. Furthermore, Bayesian approach allows for testing different hypotheses about the homogeneity of the behaviour of the above components with respect to the sector and the country where the firm develops its activity. The data analysed come from a sample of 23,293 firms in EU countries selected from the AMADEUS data-base. The period analysed ran from 1999 to 2007 and 21 sectors were analysed, chosen in such a way that there was a sufficiently large number of firms in each country sector combination for the industry effects to be estimated accurately enough for meaningful comparisons to be made by sector and country. The analysis has been conducted by sector and by country from a Bayesian perspective, thus making the study more flexible and realistic since the estimates obtained do not depend on asymptotic results. In general terms, the study finds that, although the industry effects are significant, more important are the firm specific effects. That importance varies depending on the sector or the country in which the firm carries out its activity. The influence of firm effects accounts for around 81% of total variation and display a significantly lower degree of persistence, with adjustment speeds oscillating around 34%. However, this pattern is not homogeneous but depends on the sector and country analysed. Industry effects depends also on sector and country analysed have a more marginal importance, being significantly more persistent, with adjustment speeds oscillating around 7-8% with this degree of persistence being very similar for most of sectors and countries analysed.

Keywords: dynamic models, Bayesian inference, MCMC, abnormal returns, persistence of profits, return on assets

Procedia PDF Downloads 401
10295 Structure Analysis of Text-Image Connection in Jalayrid Period Illustrated Manuscripts

Authors: Mahsa Khani Oushani

Abstract:

Text and image are two important elements in the field of Iranian art, the text component and the image component have always been manifested together. The image narrates the text and the text is the factor in the formation of the image and they are closely related to each other. The connection between text and image is an interactive and two-way connection in the tradition of Iranian manuscript arrangement. The interaction between the narrative description and the image scene is the result of a direct and close connection between the text and the image, which in addition to the decorative aspect, also has a descriptive aspect. In this article the connection between the text element and the image element and its adaptation to the theory of Roland Barthes, the structuralism theorist, in this regard will be discussed. This study tends to investigate the question of how the connection between text and image in illustrated manuscripts of the Jalayrid period is defined according to Barthes’ theory. And what kind of proportion has the artist created in the composition between text and image. Based on the results of reviewing the data of this study, it can be inferred that in the Jalayrid period, the image has a reference connection and although it is of major importance on the page, it also maintains a close connection with the text and is placed in a special proportion. It is not necessarily balanced and symmetrical and sometimes uses imbalance for composition. This research has been done by descriptive-analytical method, which has been done by library collection method.

Keywords: structure, text, image, Jalayrid, painter

Procedia PDF Downloads 234
10294 Robust Image Design Based Steganographic System

Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi

Abstract:

This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).

Keywords: encryption, thresholding, differential predictive coding, four triangles operation

Procedia PDF Downloads 493
10293 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: big data, image processing, multispectral, principal component analysis

Procedia PDF Downloads 178
10292 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 328
10291 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
10290 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition

Procedia PDF Downloads 278
10289 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 288
10288 The Image as an Initial Element of the Cognitive Understanding of Words

Authors: S. Pesina, T. Solonchak

Abstract:

An analysis of word semantics focusing on the invariance of advanced imagery in several pressing problems. Interest in the language of imagery is caused by the introduction, in the linguistics sphere, of a new paradigm, the center of which is the personality of the speaker (the subject of the language). Particularly noteworthy is the question of the place of the image when discussing the lexical, phraseological values and the relationship of imagery and metaphors. In part, the formation of a metaphor, as an interaction between two intellective entities, occurs at a cognitive level, and it is the category of the image, having cognitive roots, which aides in the correct interpretation of the results of this process on the lexical-semantic level.

Keywords: image, metaphor, concept, creation of a metaphor, cognitive linguistics, erased image, vivid image

Procedia PDF Downloads 361
10287 The Role of the Youth in Rebranding Nigeria

Authors: Hamzah Kamil Adeyemi, Oyesikun Abayomi Nathaniel

Abstract:

The plural nature of Nigeria state has created a leadership gap in the 21st century. The leadership problem encapsulated socio-economic system has called for a reorientation in youth to channel a programme that will redeem the image (OT) the country among the committee of nations and chart a way forward in bailing the country out of bad governance unemployment corruption and other anti-development policies. The touth need to raise up to the challenges of nation building. This study engaged theoretical analysis, both written records was used to add value to its quality and recommendation was made with conclusion.

Keywords: youth, education, unempolyment, rebranding, Nigeria

Procedia PDF Downloads 427
10286 The Crisis of Turkey's Downing the Russian Warplane within the Concept of Country Branding: The Examples of BBC World, and Al Jazeera English

Authors: Derya Gül Ünlü, Oguz Kuş

Abstract:

The branding of a country means that the country has its own position different from other countries in its region and thus it is perceived more specifically. It is made possible by the branding efforts of a country and the uniqueness of all the national structures, by presenting it in a specific way, by creating the desired image and attracting tourists and foreign investors. Establishing a national brand involves, in a sense, the process of managing the perceptions of the citizens of the other country about the target country, by structuring the image of the country permanently and holistically. By this means, countries are not easily affected by their crisis of international relations. Therefore, within the scope of the research that will be carried out from this point, it is aimed to show how the warplane downing crisis between Turkey and Russia is perceived on social media. The Russian warplane was downed by Turkey on November 24, 2015, on the grounds that Turkey violated the airspace on the Syrian border. Whereupon the relations between the two countries have been tensed, and Russia has called on its citizens not to go to Turkey and citizens in Turkey to return to their countries. Moreover, relations between two countries have been weakened, for example, tourism tours organized in Russia to Turkey and visa-free travel were canceled and all military dialogue was cut off. After the event, various news sites on social media published plenty of news related to topic and the readers made various comments about the event and Turkey. In this context, an investigation into the perception of Turkey's national brand before and after the warplane downing crisis has been conducted. through comments fetched from the reports on the BBC World, and from Al Jazeera English news sites on Facebook accounts, which takes place widely in the social media. In order to realize study, user comments were fetched from jet downing-related news which are published on Facebook fan-page of BBC World Service, and Al Jazeera English. Regarding this, all the news published between 24.10.2015-24.12.2015 and containing Turk and Turkey keyword in its title composed data set of our study. Afterwards, comments written to these news were analyzed via text mining technique. Furthermore, by sentiment analysis, it was intended to reveal reader’s emotions before and after the crisis.

Keywords: Al Jazeera English, BBC World, country branding, social media, text mining

Procedia PDF Downloads 224
10285 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305
10284 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.

Keywords: edge detection, multicore, gpu, opencl, mpi

Procedia PDF Downloads 478
10283 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 492
10282 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 247
10281 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 330
10280 Data Hiding in Gray Image Using ASCII Value and Scanning Technique

Authors: R. K. Pateriya, Jyoti Bharti

Abstract:

This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.

Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message

Procedia PDF Downloads 415
10279 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 91
10278 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 97
10277 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 335
10276 Challenges for Tourism Development in Algeria: Perspectives of Algerian Tourism Suppliers

Authors: Nour-Elhouda Lecheheb

Abstract:

Despite substantial tourism potentials, the Algerian tourism industry has faced a number of challenges, including the government heavy dependence on the energy sector, negative perception in the West, and a lack of effective resource management and marketing. This paper attempts to discuss the challenges hindering the development of the Algerian tourism industry from the perspective of the official tourism suppliers in Algeria both in the public and private sectors. A total of 10 semi-structured interviews were conducted during a field-trip to Algiers, Algeria, in September 2019. From the analysis of the interviews, it is evident that the Algerian tourism suppliers face a number of challenges mainly the country’s negative image in the West and a significant lack of political and financial support to contest this negative image effectively and sufficiently.

Keywords: Algerian tourism, destination development, destination image, tourism suppliers

Procedia PDF Downloads 258
10275 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 133
10274 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517