Search results for: context fusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6128

Search results for: context fusion

6098 Simulation for the Magnetized Plasma Compression Study

Authors: Victor V. Kuzenov, Sergei V. Ryzhkov

Abstract:

Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.

Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams

Procedia PDF Downloads 295
6097 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: inertial confinement fusion, mach-zehnder interferometer, digital holographic microscopy, image reconstruction, holovision

Procedia PDF Downloads 302
6096 Clinical Outcomes and Surgical Complications in Patients with Cervical Disk Degeneration

Authors: Mirzashahi Babak, Mansouri Pejman, Najafi Arvin, Farzan Mahmoud

Abstract:

Introduction: There are several surgical treatment choices for cervical spondylotic myelopathy (CSM). The aim of this study is to evaluate clinical outcomes and surgical complications in patients with cervical disk degeneration (CDD) undergoing either anterior cervical discectomy with or without fusion or cervical laminectomy and fusion. Methods: This prospective case series study included 45 consecutive patients with cervical spondylotic myelopathy between January 2010 and November 2014. There were 28 males and 17 females, with a mean age of 47 (range 37-68) years. The mean clinical follow-up was 14 months (range 3-24 months). The Neck Disability Index (NDI), visual analog scale (VAS) neck and arm pain, Short Form-36 (SF-36) were used as the functional outcome measurements. All of the complications in our patients were recorded. Results: In our study group, 26 patients underwent only one or two level anterior cervical discectomy. Ten patients underwent anterior cervical discectomy and fusion (ACDF) and nine cases underwent posterior laminectomy and fusion. We have found a statistically significant improvement between mean preoperative (29, range 19-43) and postoperative (7, range 0-12) NDI scores following surgery (P < 0.05). Also, there was a statistically significant difference between pre and post-operative VAS and SF-36 score (p < 0.05). There was a 7% overall complication rate (n = 3). The only complication in our patients was surgical site cellulitis which has been managed with oral antibiotic therapy. Conclusion: Both anterior cervical discectomy with or without fusion or posterior laminectomy and fusion are safe and efficacious treatment options for the management of CSM. The clinical outcomes seem to be fairly reproducible.

Keywords: cervical, myelopathy, discectomy, fusion, laminectomy

Procedia PDF Downloads 349
6095 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 392
6094 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation

Procedia PDF Downloads 231
6093 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 170
6092 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 597
6091 Experiences of Online Opportunities and Risks: Examining Internet Use and Digital Literacy of Young People in Nigeria

Authors: Isah Yahaya Aliyu

Abstract:

Research on Internet use has often approached beneficial uses (online opportunities) of the Internet as separate from the risky encounters (online risks) of young people online. However, empirical evidence from diverse contexts appears to increasingly support the fusion of the two sets of online activities. Hence, the current research investigates the correlation between Internet use (IU) and digital literacy (DL) with online opportunities (OP) and risks (OR), using data from a Nigerian context, where there appears a paucity of research and literature on integrating opportunities and risks in the same study. A web-based data collection method was used to administer a survey to 335 undergraduate students in Northeastern Nigeria. Underpinned to Livingstone and Helsper model, findings are largely consistent with existing literature; IU and DL influence OP (R2 = 0.791, SE = 0.265, F-Stats = 626.566, P-value <.001), equally IU and DL influence OR as well (R2 = 0.343, SE = 0.465, F-Stats = 86.671, P-value <.001). OP and OR were found to strongly correlate positively (r = .667, n = 335, p < 0.01). This study has provided buttressing evidence from a Nigerian context of the fusion of benefits and risks of the Internet among young people. It has also upheld the argument for improved literacy as strategy for minimizing risks/harm rather than restricting use. Other theoretical and policy implications of the findings have been discussed in line with local and global debates about the Internet and its attendant effects.

Keywords: digital, internet, literacy, opportunities, risks

Procedia PDF Downloads 85
6090 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 81
6089 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 73
6088 Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1

Authors: A. R. Diniz, P. Borrego, I. Bártolo, N. Taveira

Abstract:

Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors.

Keywords: cell-to-cell fusion, entry inhibitors, HIV, NAbs, vaccinia virus

Procedia PDF Downloads 308
6087 Cognitive Fusion and Obstacles to Valued Living: Beyond Pain-Specific Events in Chronic Pain

Authors: Sergio A. Carvalho, Jose Pinto-Gouveia, David Gillanders, Paula Castilho

Abstract:

The role of psychological processes has long been recognized as crucial factors in depressive symptoms in chronic pain (CP). Although some studies have explored the negative impact of being entangled with internal experiences (e.g., thoughts, emotions, physical sensations) – cognitive fusion, it is not extensively explored 1) whether these are pain-related or rather general difficult experiences, and 2) how they relate to experiencing obstacles in committing to valued actions. The current study followed a cross-sectional design in a sample of 231 participants with CP, in which a mediational model was tested through path analyses in AMOS software. The model presented a very good model fit (Χ²/DF = 1.161; CFI = .999; TLI = .996; RMSEA = .026, PCLOSE = .550.), and results showed that pain intensity was not directly related to depressive symptoms (β = .055; p = .239) but was mediated by cognitive fusion with both general and pain-related internal experiences (β = .181, 95%CI [.097; .271]; p = .015). Additionally, results showed that only general cognitive fusion (but not pain-specific fusion) was associated with experiencing obstacles to living a meaningful life, which mediated its impact on depressive symptoms (β = .197, 95%CI [.102; .307]; p = .001). Overall, this study adds on current literature by suggesting that psychological interventions to pain management should not be focused only on management of pain-related experiences, but also on developing more effective ways of relating to overall internal experiences.

Keywords: cognitive fusion, chronic pain, depressive symptoms, valued living

Procedia PDF Downloads 224
6086 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 90
6085 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 244
6084 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 475
6083 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 238
6082 Multichannel Object Detection with Event Camera

Authors: Rafael Iliasov, Alessandro Golkar

Abstract:

Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.

Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision

Procedia PDF Downloads 26
6081 Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy

Authors: Shan-e-Fatima, Mushtaq Khan, Syed Imran Hussian

Abstract:

Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample.

Keywords: fusion zone microstructure, stainless steel, low carbon steel, plasma arc welding

Procedia PDF Downloads 574
6080 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: feature fusion, image retrieval, membership function, normalization

Procedia PDF Downloads 344
6079 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 258
6078 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 531
6077 Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand

Authors: Kanokon Chaicom, Chitima Sirijerachai, Kanchana Chansung, Pinsuda Klangsang, Boonpeng Palaeng, Prajuab Chaimanee, Pimjai Ananta

Abstract:

Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population.

Keywords: chronic myeloid leukemia, BCR-ABL fusion transcript types, multiplex PCR, frequency of BCR-ABL fusion

Procedia PDF Downloads 243
6076 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware

Authors: Azita Ramezani, Atousa Ramezani

Abstract:

In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.

Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection

Procedia PDF Downloads 69
6075 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 250
6074 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: inland waterways, YOLO, sensor fusion, self-attention

Procedia PDF Downloads 116
6073 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 117
6072 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches

Authors: S. Sandri, G. M. Contessa, C. Poggi

Abstract:

An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.

Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection

Procedia PDF Downloads 350
6071 Evaluation of Fusion Sonar and Stereo Camera System for 3D Reconstruction of Underwater Archaeological Object

Authors: Yadpiroon Onmek, Jean Triboulet, Sebastien Druon, Bruno Jouvencel

Abstract:

The objective of this paper is to develop the 3D underwater reconstruction of archaeology object, which is based on the fusion between a sonar system and stereo camera system. The underwater images are obtained from a calibrated camera system. The multiples image pairs are input, and we first solve the problem of image processing by applying the well-known filter, therefore to improve the quality of underwater images. The features of interest between image pairs are selected by well-known methods: a FAST detector and FLANN descriptor. Subsequently, the RANSAC method is applied to reject outlier points. The putative inliers are matched by triangulation to produce the local sparse point clouds in 3D space, using a pinhole camera model and Euclidean distance estimation. The SFM technique is used to carry out the global sparse point clouds. Finally, the ICP method is used to fusion the sonar information with the stereo model. The final 3D models have a précised by measurement comparing with the real object.

Keywords: 3D reconstruction, archaeology, fusion, stereo system, sonar system, underwater

Procedia PDF Downloads 298
6070 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 100
6069 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 114