Search results for: Vijay Marisetty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 85

Search results for: Vijay Marisetty

55 Application of Liquid Chromatographic Method for the in vitro Determination of Gastric and Intestinal Stability of Pure Andrographolide in the Extract of Andrographis paniculata

Authors: Vijay R. Patil, Sathiyanarayanan Lohidasan, K. R. Mahadik

Abstract:

Gastrointestinal stability of andrographolide was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a validated HPLC-PDA method. The method was validated using a 5μm ThermoHypersil GOLD C18column (250 mm × 4.0 mm) and mobile phase consisting of water: acetonitrile; 70: 30 (v/v) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Andrographolide in pure form and extract Andrographis paniculata was incubated at 37°C in an incubator shaker in USP simulated gastric and intestinal fluids with and without enzymes. Systematic protocol as per FDA Guidance System was followed for stability study and samples were assayed at 0, 15, 30 and 60 min intervals for gastric and at 0, 15, 30, 60 min, 1, 2 and 3 h for intestinal stability study. Also, the stability study was performed up to 24 h to see the degradation pattern in SGF and SIF (with enzyme and without enzyme). The developed method was found to be accurate, precise and robust. Andrographolide was found to be stable in SGF (pH ∼ 1.2) for 1h and SIF (pH 6.8) up to 3 h. The relative difference (RD) of amount of drug added and found at all time points was found to be < 3%. The present study suggests that drug loss in the gastrointestinal tract takes place may be by membrane permeation rather than a degradation process.

Keywords: andrographolide, Andrographis paniculata, in vitro, stability, gastric, Intestinal HPLC-PDA

Procedia PDF Downloads 243
54 Epidemiology, Knowledge, Attitude, and Practices among Patients of Stroke

Authors: Vijay nandmer, Ajay Nandmer

Abstract:

Stigmatized psycho-social perception poses a serious challenge and source of discrimination which impedes stroke patients from attaining a satisfactory quality of life. The present study was aimed to obtain information on knowledge, attitudes and practices (KAP) of stroke patients in the institute. We included 1000 people in our random sampling survey. Demographic details and responses to a questionnaire assessing the knowledge, attitude and practices were recorded. Although the majority of the patients belonged to low socioeconomic strata, the literacy rate was reasonably high (96.3%). A large majority (91.3%) of people had heard about stroke and (85.2%) knew that stroke can be treated with modern drugs. However, a negative attitude was reflected in the belief that stroke happens due to supernatural powers (hawa lagne se) (50.6%). Analysis of the data revealed regional differences in KAP which could be attributed to local Factors, such as literacy, awareness about stroke, and practice of different systems of medicine. Some of the differences can also be attributed to a category of study population whether it included patients or non-stroke individuals since the former are likely to have less negative attitudes than the public. There is a need to create awareness about stroke on a nation-wide basis to dispel the misconceptions and stigma through effective and robust programs with the aim to lessen the disease burden.

Keywords: epidemiology, sroke, literacy, stroke

Procedia PDF Downloads 390
53 Phytoestrogen Content of Fermented Lupin Tempeh and Natto

Authors: Niranjani Wickramsinghe, Mario Soares, Stuart Johnson, Ranil Cooray, Vijay Jayasena

Abstract:

Tempeh is a traditional fermented soya bean food in Indonesia which is produced from de-hulled soya fermented with Rhizopusoligosporus. Natto is a traditional Japanese food made from whole soya bean seed fermentation with the bacteriaBacillus subtilis natto. Lupin is a grain legume with a low content of the phytoestrogenic isoflavones genistein and daidzein compared to soya. However due a comparable nutrition profile and increased cost effectiveness relative to soy, lupin has been substituted into various oriental fermented foods such as tempe and natto. Lupin tempeh and lupin natto were prepared using either WS or DHS. Analysis for genistein and daidzein content was conducted using HPLC for time points zero, 12h, 24h, 36h, 48h and 72h after fermentation. Results revealed that the amount of genistein and daidzein significantly increased with time in both tempeh and natto. Both isoflavones peaked at 48h in lupin tempeh and earlier at 36h in lupin natto. WS tempeh and WS natto had significantly more genistein than WHS tempe and WHS natto. Diadzeincontent of WHS tended to be higher than WS across both products. It is concluded that, fermentation time increased the amount of genistein and daidzein content in both lupin tempeh and natto and the form of lupin raw material used affected the genistein level and to some extent the daidzein content of fermented products.

Keywords: lupin, natto, soya, tempeh

Procedia PDF Downloads 381
52 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray

Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry

Abstract:

Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.

Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion

Procedia PDF Downloads 97
51 Virtual Modelling of Turbulent Fibre Flow in a Low Consistency Refiner for a Sustainable and Energy Efficient Process

Authors: Simon Ingelsten, Anton Lundberg, Vijay Shankar, Lars-Olof Landström, Örjan Johansson

Abstract:

The flow in a low consistency disc refiner is simulated with the aim of identifying flow structures possibly being of importance for a future study to optimise the energy efficiency in refining processes. A simplified flow geometry is used, where a single groove of a refiner disc is modelled. Two different fibre models are used to simulate turbulent fibre suspension flow in the groove. The first model is a Bingham viscoplastic fluid model where the fibre suspension is treated as a non-Newtonian fluid with a yield stress. The second model is a new model proposed in a recent study where the suspended fibres effect on flow is accounted for through a modelled orientation distribution function (ODF). Both models yielded similar results with small differences. Certain flow characteristics that were expected and that was found in the literature were identified. Some of these flow characteristics may be of importance in a future process to optimise the refiner geometry to increase the energy efficiency. Further study and a more detailed flow model is; however, needed in order for the simulations to yield results valid for quantitative use in such an optimisation study. An outline of the next steps in such a study is proposed.

Keywords: disc refiner, fibre flow, sustainability, turbulence modelling

Procedia PDF Downloads 408
50 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.

Keywords: PHWRs, Zr-2.5Nb, SS-410, wear

Procedia PDF Downloads 92
49 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 164
48 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing

Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee

Abstract:

AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.

Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase

Procedia PDF Downloads 107
47 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.

Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization

Procedia PDF Downloads 70
46 Design and Identification of Mycobacterium tuberculosis Glutamate Racemase (MurI) Inhibitors

Authors: Prasanthi Malapati, R. Reshma, Vijay Soni, Perumal Yogeeswari, Dharmarajan Sriram

Abstract:

In the present study, we attempted to develop Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose, glutamate racemase (coded by MurI gene) was selected. This enzyme racemize L-glutamate to D-glutamate required for the construction of peptidoglycan in the bacterial cell wall synthesis process. Furthermore this enzyme is neither expressed nor its product, D-glutamate is normally found in mammals, and hence designing inhibitors against this enzyme will not affect the host system as well act as potential antitubercular drugs. A library of BITS in house compounds were screened against Mtb MurI enzyme. Based on docking score, interactions and synthetic feasibility one hit lead was identified. Further optimization of lead was attempted and its derivatives were synthesized. Forty eight derivatives of 2-phenylbenzo[d]oxazole and 2-phenylbenzo[d]thiazole were synthesized and evaluated for Mtb MurI inhibition study, in vitro activities against Mtb, cytotoxicity against RAW 264.7 cell line. Chemical derivatization of the lead resulted in compounds NR-1213 AND NR-1124 as the potent M. tuberculosis glutamate racemase inhibitors with IC50 of 4-5µM which are remarkable and were found to be non-cytotoxic. Molecular dynamics, dormant models and cardiotoxicity studies of the most active molecules are in process.

Keywords: cell wall biosynthesis, dormancy, glutamate racemase, tuberculosis

Procedia PDF Downloads 269
45 Dielectric Study of Lead-Free Double Perovskite Structured Polycrystalline BaFe0.5Nb0.5O3 Material

Authors: Vijay Khopkar, Balaram Sahoo

Abstract:

Material with high value of dielectric constant has application in the electronics devices. Existing lead based materials have issues such as toxicity and problem with synthesis procedure. Double perovskite structured barium iron niobate (BaFe0.5Nb0.5O3, BFN) is the lead-free material, showing a high value of dielectric constant. Origin of high value of the dielectric constant in BFN is not clear. We studied the dielectric behavior of polycrystalline BFN sample over wide temperature and frequency range. A BFN sample synthesis by conventional solid states reaction method and phase pure dens pellet was used for dielectric study. The SEM and TEM study shows the presence of grain and grain boundary region. The dielectric measurement was done between frequency range of 40 Hz to 5 MHz and temperature between 20 K to 500 K. At 500 K temperature and lower frequency, there observed high value of dielectric constant which decreases with increase in frequency. The dipolar relaxation follows non-Debye type polarization with relaxation straight of 3560 at room temperature (300 K). Activation energy calculated from the dielectric and modulus formalism found to be 17.26 meV and 2.74 meV corresponds to the energy required for the motion of Fe3+ and Nb5+ ions within the oxygen octahedra. Our study shows that BFN is the order disorder type ferroelectric material.

Keywords: barium iron niobate, dielectric, ferroelectric, non-Debye

Procedia PDF Downloads 137
44 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India

Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta

Abstract:

The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.

Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment

Procedia PDF Downloads 97
43 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach

Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp

Abstract:

The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.

Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation

Procedia PDF Downloads 178
42 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes

Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar

Abstract:

Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.

Keywords: life time, pregnancy rate, production, service period, standardization

Procedia PDF Downloads 636
41 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms

Authors: T. P. Singh, Vijay Gautam

Abstract:

Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cup-chain type metering device was used to singulate the gladiolus corms while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.

Keywords: coefficient of uniformity, corm spacing, gladiolus planter, mechanization

Procedia PDF Downloads 239
40 Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential

Authors: Vijay Kumar, Mack Moyo, Johannes Van Staden

Abstract:

Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant.

Keywords: horticultural plant, Lachenalia viridiflora, phloroglucinol, somatic embryogenesis, thidiazuron

Procedia PDF Downloads 632
39 To Estimate the Association between Visual Stress and Visual Perceptual Skills

Authors: Vijay Reena Durai, Krithica Srinivasan

Abstract:

Introduction: The two fundamental skills involved in the growth and wellbeing of any child can be categorized into visual motor and perceptual skills. Visual stress is a disorder which is characterized by visual discomfort, blurred vision, misspelling words, skipping lines, letters bunching together. There is a need to understand the deficits in perceptual skills among children with visual stress. Aim: To estimate the association between visual stress and visual perceptual skills Objective: To compare visual perceptual skills of children with and without visual stress Methodology: Children between 8 to 15 years of age participated in this cross-sectional study. All children with monocular visual acuity better than or equal to 6/6 were included. Visual perceptual skills were measured using test for visual perceptual skills (TVPS) tool. Reading speed was measured with the chosen colored overlay using Wilkins reading chart and pattern glare score was estimated using a 3cpd gratings. Visual stress was defined as change in reading speed of greater than or equal to 10% and a pattern glare score of greater than or equal to 4. Results: 252 children participated in this study and the male: female ratio of 3:2. Majority of the children preferred Magenta (28%) and Yellow (25%) colored overlay for reading. There was a significant difference between the two groups (MD=1.24±0.6) (p<0.04, 95% CI 0.01-2.43) only in the sequential memory skills. The prevalence of visual stress in this group was found to be 31% (n=78). Binary logistic regression showed that odds ratio of having poor visual perceptual skills was OR: 2.85 (95% CI 1.08-7.49) among children with visual stress. Conclusion: Children with visual stress are found to have three times poorer visual perceptual skills than children without visual stress.

Keywords: visual stress, visual perceptual skills, colored overlay, pattern glare

Procedia PDF Downloads 388
38 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.

Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR

Procedia PDF Downloads 211
37 Optimal Portfolio of Multi-service Provision based on Stochastic Model Predictive Control

Authors: Yifu Ding, Vijay Avinash, Malcolm McCulloch

Abstract:

As the proliferation of decentralized energy systems, the UK power system allows small-scale entities such as microgrids (MGs) to tender multiple energy services including energy arbitrage and frequency responses (FRs). However, its operation requires the balance between the uncertain renewable generations and loads in real-time and has to fulfill their provision requirements of contract services continuously during the time window agreed, otherwise it will be penalized for the under-delivered provision. To hedge against risks due to uncertainties and maximize the economic benefits, we propose a stochastic model predictive control (SMPC) framework to optimize its operation for the multi-service provision. Distinguished from previous works, we include a detailed economic-degradation model of the lithium-ion battery to quantify the costs of different service provisions, as well as accurately describe the changing dynamics of the battery. Considering a branch of load and generation scenarios and the battery aging, we formulate a risk-averse cost function using conditional value at risk (CVaR). It aims to achieve the maximum expected net revenue and avoids severe losses. The framework will be performed on a case study of a PV-battery grid-tied microgrid in the UK with real-life data. To highlight its performance, the framework will be compared with the case without the degradation model and the deterministic formulation.

Keywords: model predictive control (MPC), battery degradation, frequency response, microgrids

Procedia PDF Downloads 125
36 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time

Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar

Abstract:

The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.

Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors

Procedia PDF Downloads 74
35 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds

Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath

Abstract:

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.

Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase

Procedia PDF Downloads 139
34 Stress as Risk Factor for Onset of Type-2 Diabetes Mellitus in Visakhapatnam Tribal Community of Andhra Pradesh, India

Authors: Vijaya Nirmala Pangi, K. V. Subhramanyam, C. Vijay Lakshmi

Abstract:

Background: The prevalence of Type 2 Diabetes Mellitus is increasing drastically at a vigorous rate all over the world population. Aim: The present study aims to determine the prevalence of type-2 diabetes mellitus in Paderu tribal area population of Visakhapatnam district, located in northeastern region of Andhra Pradesh. Methods: A random sampling method was followed in 1025 subjects including controls (n=25) and determined 75-g oral glucose tolerance test to assess the presence of type 2 diabetes mellitus. The effect of anthropometric factors like age, gender, literacy, socio economic status, and environmental risk factors such as body fat response, hypertension and psychophysical stress response were determined in the studied subjects. Results: 78 (7.8%) were diabetic. Type 2 Diabetes Mellitus was found to be comparable between the two genders. Prevalence of diabetes was observed to be high in illiterate, low economic status subjects. Body fat response was comparable between control and diabetic subjects. However hypertension, stress associated enzymes showed significant (p < 0.05) decrease in diabetic subjects compared to controls in both the genders. Conclusion: It appears that there is a rising pattern in the prevalence of diabetes mellitus in tribal area, Paderu, Andhra Pradesh, India compared to previous rural studies.

Keywords: anthropometric studies, hypertension, oral glucose tolerance test, stress enzymes, type-2 diabetes mellitus

Procedia PDF Downloads 470
33 Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer.

Keywords: tribo-oxide layer, wear, mechanically mixed layer, zircaloy

Procedia PDF Downloads 87
32 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 135
31 Natural User Interface Adapter: Enabling Natural User Interface for Non-Natural User Interface Applications

Authors: Vijay Kumar Kolagani, Yingcai Xiao

Abstract:

Adaptation of Natural User Interface (NUI) has been slow and limited. NUI devices like Microsoft’s Kinect and Ultraleap’s Leap Motion can only interact with a handful applications that were specifically designed and implemented for them. A NUI device just can’t be used to directly control millions of applications that are not designed to take NUI input. This is in the similar situation like the adaptation of color TVs. At the early days of color TV, the broadcasting format was in RGB, which was not viewable by blackand-white TVs. TV broadcasters were reluctant to produce color programs due to limited viewership. TV viewers were reluctant to buy color TVs because there were limited programs to watch. Color TV’s breakthrough moment came after the adaptation of NTSC standard which allowed color broadcasts to be compatible with the millions of existing black-and-white TVs. This research presents a framework to use NUI devices to control existing non-NUI applications without reprogramming them. The methodology is to create an adapter to convert input from NUI devices into input compatible with that generated by CLI (Command Line Input) and GUI (Graphical User Interface) devices. The CLI/GUI compatible input is then sent to the active application through the operating system just like any input from a CLI/GUI device to control the non-NUI program that the user is controlling. A sample adapter has been created to convert input from Kinect to keyboard strokes, so one can use the input from Kinect to control any applications that take keyboard input, such as Microsoft’s PowerPoint. When the users use the adapter to control their PowerPoint presentations, they can free themselves from standing behind a computer to use its keyboard and can roam around in front of the audience to use hand gestures to control the PowerPoint. It is hopeful such adapters can accelerate the adaptation of NUI devices.

Keywords: command line input, graphical user interface, human computer interaction, natural user interface, NUI adapter

Procedia PDF Downloads 18
30 Evaluation of the Capabilities of Saccharomyces cerevisiae and Lactobacillus plantarum in Improvement of Total Phenolic Content and Antioxidant Activity in Carob Kibble

Authors: Thi Huong Vu, Vijay Jayasena, Zhongxiang Fang, Gary Dykes

Abstract:

Carob kibble has recently received attention due to the presence of high level of polyphenol antioxidants. The capacity of microorganisms to improve antioxidant activities and total phenolics in carob kibble was investigated in the study. Two types of microorganisms including lactic acid bacteria Lactobacillus plantarum (L. plantarum) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used in single and in their combination as starters. The total phenolic content was determined by the Folin–Ciocalteu method. Antioxidant activities were assessed scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study found that S. cerevisiae alone considerably improved 55% total phenolics content at 15 h, while L. plantarum caused in a loss of 20% through the process. Antioxidant capacity of the yeast-fermented samples significantly increased by 43 % and 10 % in ABTS and DPPH assays, respectively. However, reduction of 13 % and 32 % inhibition were recorded in the carob treated with L. plantarum. In the combination of S. cerevisiae and L. plantarum (1:1), both total phenolic content and antioxidant activity of carob kibble were a similar trend as these of S. cerevisiae single, but a lower improvement. The antioxidant power of the extracts was linearly correlated to their total phenolic contents (R=0.75). The results suggested that S. cerevisiae alone was the better for enhancement of both total phenolic content and antioxidant activity in carob kibble using submerged fermentation. The efficiency of fermentation reached the highest at 15h. Thus submerged fermentation with S. cerevisiae offers a tool with simple and cost effective to further increase the bioactive potential of carob kibble, which is in use for food, cosmetic and pharmaceutical industries.

Keywords: antioxidant activity, carob kibble, lactobacillus plantarum, saccharomyces cerevisiae, total phenolics

Procedia PDF Downloads 290
29 Molecular Insights into the Genetic Integrity of Long-Term Micropropagated Clones Using Start Codon Targeted (SCoT) Markers: A Case Study with Ansellia africana, an Endangered, Medicinal Orchid

Authors: Paromik Bhattacharyya, Vijay Kumar, Johannes Van Staden

Abstract:

Micropropagation is an important tool for the conservation of threatened and commercially important plant species of which orchids deserve special attention. Ansellia africana is one such medicinally important orchid species having much commercial significance. Thus, development of regeneration protocols for producing clonally stable regenerates using axillary buds is of much importance. However, for large-scale micropropagation to become not only successful but also acceptable by end-users, somaclonal variations occurring in the plantlets need to be eliminated. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that may account for the somaclonal variations of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach is of utmost importance. In the present study, the clonal integrity of the long term micropropagated A. africana plants were assessed using advanced molecular marker system i.e. Start Codon Targeted Polymorphism (SCoT). Our studies recorded a clonally stable regeneration protocol for A. africana with a very high degree of clonal fidelity amongst the regenerates. The results obtained from these molecular analyses could help in modifying the regeneration protocols for obtaining clonally stable true to type plantlets for sustainable commercial use.

Keywords: medicinal orchid micropropagation, start codon targeted polymorphism (SCoT), RAP), traditional African pharmacopoeia, genetic fidelity

Procedia PDF Downloads 427
28 Assessing Significance of Correlation with Binomial Distribution

Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar

Abstract:

Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.

Keywords: binomial distribution, correlation, microarray, outliers, transcriptome

Procedia PDF Downloads 416
27 Effect of Hybrid Fibers on Mechanical Properties in Autoclaved Aerated Concrete

Authors: B. Vijay Antony Raj, Umarani Gunasekaran, R. Thiru Kumara Raja Vallaban

Abstract:

Fibrous autoclaved aerated concrete (FAAC) is concrete containing fibrous material in it which helps to increase its structural integrity when compared to that of convention autoclaved aerated concrete (CAAC). These short discrete fibers are uniformly distributed and randomly oriented, which enhances the bond strength within the aerated concrete matrix. Conventional red-clay bricks create larger impact to the environment due to red soil depletion and it also consumes large amount to time for construction. Whereas, AAC are larger in size, lighter in weight and it is environmentally friendly in nature and hence it is a viable replacement for red-clay bricks. Internal micro cracks and corner cracks are the only disadvantages of conventional autoclaved aerated concrete, to resolve this particular issue it is preferable to make use of fibers in it.These fibers are bonded together within the matrix and they induce the aerated concrete to withstand considerable stresses, especially during the post cracking stage. Hence, FAAC has the capability of enhancing the mechanical properties and energy absorption capacity of CAAC. In this research work, individual fibers like glass, nylon, polyester and polypropylene are used they generally reduce the brittle fracture of AAC.To study the fibre’s surface topography and composition, SEM analysis is performed and then to determine the composition of a specimen as a whole as well as the composition of individual components EDAX mapping is carried out and then an experimental approach was performed to determine the effect of hybrid (multiple) fibres at various dosage (0.5%, 1%, 1.5%) and curing temperature of 180-2000 C is maintained to determine the mechanical properties of autoclaved aerated concrete. As an analytical part, the outcome experimental results is compared with fuzzy logic using MATLAB.

Keywords: fiberous AAC, crack control, energy absorption, mechanical properies, SEM, EDAX, MATLAB

Procedia PDF Downloads 270
26 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 155