Search results for: K-M reactor
681 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor
Authors: Manal A. Mohsen, Ahmed Tawfik
Abstract:
Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)
Procedia PDF Downloads 380680 Numerical Simulation of Solar Reactor for Water Disinfection
Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik
Abstract:
Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent
Procedia PDF Downloads 351679 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 143678 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping
Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru
Abstract:
This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier
Procedia PDF Downloads 329677 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater
Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha
Abstract:
The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.Keywords: bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor
Procedia PDF Downloads 261676 A Study on the Treatment of Municipal Waste Water Using Sequencing Batch Reactor
Authors: Bhaven N. Tandel, Athira Rajeev
Abstract:
Sequencing batch reactor process is a suspended growth process operating under non-steady state conditions which utilizes a fill and draw reactor with complete mixing during the batch reaction step (after filling) and where the subsequent steps of aeration and clarification occur in the same tank. All sequencing batch reactor systems have five steps in common, which are carried out in sequence as follows, (1) fill (2) react (3) settle (sedimentation/clarification) (4) draw (decant) and (5) idle. The study was carried out in a sequencing batch reactor of dimensions 44cmx30cmx70cm with a working volume of 40 L. Mechanical stirrer of 100 rpm was used to provide continuous mixing in the react period and oxygen was supplied by fish tank aerators. The duration of a complete cycle of sequencing batch reactor was 8 hours. The cycle period was divided into different phases in sequence as follows-0.25 hours fill phase, 6 hours react period, 1 hour settling phase, 0.5 hours decant period and 0.25 hours idle phase. The study consisted of two runs, run 1 and run 2. Run 1 consisted of 6 hours aerobic react period and run 2 consisted of 3 hours aerobic react period followed by 3 hours anoxic react period. The influent wastewater used for the study had COD, BOD, NH3-N and TKN concentrations of 308.03±48.94 mg/L, 100.36±22.05 mg/L, 14.12±1.18 mg/L, and 24.72±2.21 mg/L respectively. Run 1 had an average COD removal efficiency of 41.28%, BOD removal efficiency of 56.25%, NH3-N removal efficiency of 86.19% and TKN removal efficiency of 54.4%. Run 2 had an average COD removal efficiency of 63.19%, BOD removal efficiency of 73.85%, NH3-N removal efficiency of 90.74% and TKN removal efficiency of 65.25%. It was observed that run 2 gave better performance than run 1 in the removal of COD, BOD and TKN.Keywords: municipal waste water, aerobic, anoxic, sequencing batch reactor
Procedia PDF Downloads 550675 Implications of Fuel Reloading in Heterogeneous Thorium-Based Fuel Designs for Improved Fuel Cycle Characteristics
Authors: Hendrik Bernard Van Der Walt, Frik Van Niekerk
Abstract:
Fuel models render a reduction in BOL when thorium is added to a reactor core. Thorium emulates the role of a fertile poison, and is beneficial for reducing beginning of cycle (BOC) excess reactivity. In spite of the build-up of 233U over the duration of a fuel cycle, the effects of fuel reloading have a significant impact on fuel viability, especially in the case of heterogeneous thorium-based fuels. The most common practice of compensating for the reduction of BOC reactivity is the addition of fissile isotopes (uranium fuel with increased enrichment or plutonium). This study introduces a heterogeneous thorium-based fuel with minimal fissile isotope additions. A pseudo reloading scheme was developed for numerical simulations of an infinite reactor based on the North-Anna 1 reactor operating in Virginia, USA. Use of this reloading pattern allows new thorium-based fuel to be loaded into the reactor model as part of a phasing in strategy at the end of any conventional reactor cycle. Results demonstrate the effects of thorium-based fuel on fuel cycle characteristics such as fuel cycle length, neutron economy and material matrix. Application of the above mentioned approach delivered promising results and presents a heterogeneous thorium-based fuel which could replace conventional fuel of typical, currently operating (or future) reactors without the need for expensive reactor redesign or fuel recycling strategies.Keywords: nuclear fuel, nuclear characteristics, nuclear fuel cycle, thorium-based fuel, heterogeneous design, fuel reloading
Procedia PDF Downloads 135674 Structural Design of Sonochemical Reactor to Enhance Energy Transfer Efficiency and Anticorrosion Effect
Authors: Jin-Ho Han, Kyong-Ho Ri, Ju-Yong Hwang, Song-Guk Kim, Sang-Jin Kim
Abstract:
This study focuses on the design of a sonochemical reactor that has excellent anticorrosion effect and acoustic pressure distribution by optimization of the reaction vessel. Sonochemical reactors using the Barbell horn transducer have advantages, including high efficiency of energy conversion, large amplitude of the transducer and low damping. Meanwhile, we performed COMSOL optimization simulations to minimize the corrosion of the horn and the inner wall of the reaction vessel by cavitation bubbles during the sonochemical reaction. It was experimentally verified that the immersion depth of the horn obtained by simulation and the geometric parameters of the vessel are suitable for optimization purposes. In this way, a sonochemical reactor with good acoustic pressure distribution and suitable for obtaining a purer reaction product can be designed.Keywords: sonochemical reactor, COMSOL optimization simulation, immersion type, barbell horn
Procedia PDF Downloads 7673 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.Keywords: numerical simulation, carbonization, gasification, biomass, reactor
Procedia PDF Downloads 102672 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 219671 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC
Procedia PDF Downloads 245670 The Feasibility of Glycerol Steam Reforming in an Industrial Sized Fixed Bed Reactor Using Computational Fluid Dynamic (CFD) Simulations
Authors: Mahendra Singh, Narasimhareddy Ravuru
Abstract:
For the past decade, the production of biodiesel has significantly increased along with its by-product, glycerol. Biodiesel-derived glycerol massive entry into the glycerol market has caused its value to plummet. Newer ways to utilize the glycerol by-product must be implemented or the biodiesel industry will face serious economic problems. The biodiesel industry should consider steam reforming glycerol to produce hydrogen gas. Steam reforming is the most efficient way of producing hydrogen and there is a lot of demand for it in the petroleum and chemical industries. This study investigates the feasibility of glycerol steam reforming in an industrial sized fixed bed reactor. In this paper, using computational fluid dynamic (CFD) simulations, the extent of the transport resistances that would occur in an industrial sized reactor can be visualized. An important parameter in reactor design is the size of the catalyst particle. The size of the catalyst cannot be too large where transport resistances are too high, but also not too small where an extraordinary amount of pressure drop occurs. The goal of this paper is to find the best catalyst size under various flow rates that will result in the highest conversion. Computational fluid dynamics simulated the transport resistances and a pseudo-homogenous reactor model was used to evaluate the pressure drop and conversion. CFD simulations showed that glycerol steam reforming has strong internal diffusion resistances resulting in extremely low effectiveness factors. In the pseudo-homogenous reactor model, the highest conversion obtained with a Reynolds number of 100 (29.5 kg/h) was 9.14% using a 1/6 inch catalyst diameter. Due to the low effectiveness factors and high carbon deposition rates, a fluidized bed is recommended as the appropriate reactor to carry out glycerol steam reforming.Keywords: computational fluid dynamic, fixed bed reactor, glycerol, steam reforming, biodiesel
Procedia PDF Downloads 308669 Numerical Simulation of Flow and Heat Transfer Characteristics with Various Working Conditions inside a Reactor of Wet Scrubber
Authors: Jonghyuk Yoon, Hyoungwoon Song, Youngbae Kim, Eunju Kim
Abstract:
Recently, with the rapid growth of semiconductor industry, lots of interests have been focused on after treatment system that remove the polluted gas produced from semiconductor manufacturing process, and a wet scrubber is the one of the widely used system. When it comes to mechanism of removing the gas, the polluted gas is removed firstly by chemical reaction in a reactor part. After that, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid. Effective design of the reactor part inside the wet scrubber is highly important since removal performance of the polluted gas in the reactor plays an important role in overall performance and stability. In the present study, a CFD (Computational Fluid Dynamics) analysis was performed to figure out the thermal and flow characteristics inside unit a reactor of wet scrubber. In order to verify the numerical result, temperature distribution of the numerical result at various monitoring points was compared to the experimental result. The average error rates (12~15%) between them was shown and the numerical result of temperature distribution was in good agreement with the experimental data. By using validated numerical method, the effect of the reactor geometry on heat transfer rate was also taken into consideration. Uniformity of temperature distribution was improved about 15%. Overall, the result of present study could be useful information to identify the fluid behavior and thermal performance for various scrubber systems. This project is supported by the ‘R&D Center for the reduction of Non-CO₂ Greenhouse gases (RE201706054)’ funded by the Korea Ministry of Environment (MOE) as the Global Top Environment R&D Program.Keywords: semiconductor, polluted gas, CFD (Computational Fluid Dynamics), wet scrubber, reactor
Procedia PDF Downloads 145668 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling
Procedia PDF Downloads 393667 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network
Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi
Abstract:
The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design
Procedia PDF Downloads 278666 Neutronic Calculations for Central Test Loop in Heavy Water Research Reactor
Authors: Hadi Shamoradifar, Behzad Teimuri, Parviz Parvaresh, Saeed Mohammadi
Abstract:
One of the experimental facilities of the heavy water research reactor is the central test loop (C.T.L). It is located along the central axial line of the vessel, and therefore will highly affect the neutronic parameters of the reactor, so from the neutronics point of view, C.T.L is the most important facility. It is mainly designed for fuel testing, thought other applications such as radioisotope production and neutron activation, can be imagine for it. All of the simulations were performed by MCNPX2.6. As a first step towards C.T.L analysis, the effect of D2O-filled, H2O-filled, and He-filled C.T.L on the effective multiplication factor (Keff.), have been evaluated. According to results, H2O-filled C.T.L has a higher thermal neutron, while He-filled C.T.L includes more resonance neutrons. In the next step thermal and total axial neutron fluxes, were calculated and used as the comparison parameters. The core without C.T.L (C.T.L replaced by heavy water) is selected as the reference case, and the effect of all other cases is calculated according to that.Keywords: heavy water reactor, neutronic calculations, central test loop, neutron activation
Procedia PDF Downloads 364665 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness
Procedia PDF Downloads 334664 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando
Abstract:
Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.Keywords: olive stone, combustion, reaction rate, fluidized bed
Procedia PDF Downloads 201663 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time
Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi
Abstract:
This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics
Procedia PDF Downloads 364662 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor
Authors: Michael Bach
Abstract:
Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength
Procedia PDF Downloads 185661 Treatment of Poultry Slaughterhouse Wastewater by Mesophilic Static Granular Bed Reactor (SGBR) Coupled with UF Membrane
Authors: Moses Basitere, Marshal Sherene Sheldon, Seteno Karabo Obed Ntwampe, Debbie Dejager
Abstract:
In South Africa, Poultry slaughterhouses consume largest amount of freshwater and discharges high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of bench-scale mesophilic Static Granular Bed Reactor (SGBR) containing fully anaerobic granules coupled with ultra-filtration (UF) membrane as a post-treatment for poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by chemical oxygen demand (COD) range between 2000 and 6000 mg/l, average biological oxygen demand (BOD) of 2375 mg/l and average fats, oil and grease (FOG) of 554 mg/l. A continuous SGBR anaerobic reactor was operated for 6 weeks at different hydraulic retention time (HRT) and an Organic loading rate. The results showed an average COD removal was greater than 90% for both the SGBR anaerobic digester and ultrafiltration membrane. The total suspended solids and fats oil and grease (FOG) removal was greater than 95%. The SGBR reactor coupled with UF membrane showed a greater potential to treat poultry slaughterhouse wastewater.Keywords: chemical oxygen demand, poultry slaughterhouse wastewater, static granular bed reactor, ultrafiltration, wastewater
Procedia PDF Downloads 387660 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution
Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria
Abstract:
We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials
Procedia PDF Downloads 592659 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor
Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay
Abstract:
In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency
Procedia PDF Downloads 157658 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation
Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma
Abstract:
The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation
Procedia PDF Downloads 508657 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor
Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim
Abstract:
Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate
Procedia PDF Downloads 273656 Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions
Authors: Camila da Silva, Simone Belorte de Andrade, Vitor Augusto dos Santos Garcia, Vladimir Ferreira Cabral, J. Vladimir Oliveira Lúcio Cardozo-Filho
Abstract:
In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration.Keywords: packed bed reactor, ethyl esters, continuous process, catalyst-free process
Procedia PDF Downloads 526655 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen
Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying
Abstract:
One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.Keywords: reactor, modeling, methanol, steam reforming
Procedia PDF Downloads 299654 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant
Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz
Abstract:
Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.Keywords: biogas, digestion, heating system, mixing system
Procedia PDF Downloads 154653 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production
Authors: Behnam Mahdiyan Nasl
Abstract:
In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.Keywords: biogas, cheese whey, cattle manure, energy
Procedia PDF Downloads 337652 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor
Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap
Abstract:
Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor. It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor
Procedia PDF Downloads 177