Search results for: network technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11937

Search results for: network technology

6027 Bicycle Tourism and Sharing Economy (C2C-Tourism): Analysis of the Reciprocity Behavior in the Case of Warmshowers

Authors: Jana Heimel, Franziska Drescher, Lauren Ugur, Graciela Kuchle

Abstract:

Sharing platforms are a widely investigated field. However, there is a research gap with a lack of focus on ‘real’ (non-profit-orientated) sharing platforms. The research project addresses this gap by conducting an empirical study on a private peer-to-peer (P2P) network to investigate cooperative behavior from a socio-psychological perspective. In recent years the conversion from possession to accessing is increasingly influencing different sectors, particularly the traveling industry. The number of people participating in hospitality exchange platforms like Airbnb, Couchsurfing, and Warmshowers (WS) is rapidly growing. WS is an increasingly popular online community that is linking cycling tourists and locals. It builds on the idea of the “sharing economy” as a not-for-profit hospitality network for bicycle tourists. Hosts not only provide a sleeping berth and warm shower free of charge but also offer additional services to their guests, such as cooking and washing clothes for them. According to previous studies, they are motivated by the idea of promoting cultural experience and forming new friendships. Trust and reciprocity are supposed to play major roles in the success of such platforms. The objective of this research project is to analyze the reciprocity behavior within the WS community. Reciprocity is the act of giving and taking among each other. Individuals feel obligated to return a favor and often expect to increase their own chances of receiving future benefits for themselves. Consequently, the drivers that incite giving and taking, as well as the motivation for hosts and guests, are examined. Thus, the project investigates a particular tourism offer that contributes to sustainable tourism by analyzing P2P resp. cyclist-to-cyclist, C2C) tourism. C2C tourism is characterized by special hospitality and generosity. To find out what motivations drive the hosts and which determinants drive the sharing cycling economy, an empirical study has been conducted globally through an online survey. The data was gathered through the WS community and comprised responses from more than 10,000 cyclists around the globe. Next to general information mostly comprising quantitative data on bicycle tourism (year/tour distance, duration and budget), qualitative information on traveling with WS as well as hosting was collected. The most important motivations for a traveler is to explore the local culture, to save money, and to make friends. The main reasons to host a guest are to promote the use of bicycles and to make friends, but also to give back and pay forward. WS members prefer to stay with/host cyclists. The results indicate that C2C tourists share homogenous characteristics and a similar philosophy, which is crucial for building mutual trust. Members of WS are generally extremely trustful. The study promotes an ecological form of tourism by combining sustainability, regionality, health, experience and the local communities' cultures. The empirical evidence found and analyzed, despite evident limitations, enabled us to shed light, especially on the issue of motivations and social capital, and on the functioning of ‘sharing’ platforms. Final research results are intended to promote C2C tourism around the globe to further replace conventional by sustainable tourism.

Keywords: bicycle tourism, homogeneity, reciprocity, sharing economy, trust

Procedia PDF Downloads 120
6026 Propagation of the Effects of Certain Types of Military Psychological Operations in a Networked Population

Authors: Colette Faucher

Abstract:

In modern asymmetric conflicts, the Armed Forces generally have to intervene in countries where the internal peace is in danger. They must make the local population an ally in order to be able to deploy the necessary military actions with its support. For this purpose, psychological operations (PSYOPs) are used to shape people’s behaviors and emotions by the modification of their attitudes in acting on their perceptions. PSYOPs aim at elaborating and spreading a message that must be read, listened to and/or looked at, then understood by the info-targets in order to get from them the desired behavior. A message can generate in the info-targets, reasoned thoughts, spontaneous emotions or reflex behaviors, this effect partly depending on the means of conveyance used to spread this message. In this paper, we focus on psychological operations that generate emotions. We present a method based on the Intergroup Emotion Theory, that determines, from the characteristics of the conveyed message and of the people from the population directly reached by the means of conveyance (direct info-targets), the emotion likely to be triggered in them and we simulate the propagation of the effects of such a message on indirect info-targets that are connected to them through the social networks that structure the population.

Keywords: military psychological operations, social identity, social network, emotion propagation

Procedia PDF Downloads 412
6025 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 107
6024 Modern Agriculture and Employment Generation in Nigeria: A Recursive Model Approach

Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon

Abstract:

Several policies and programs initiated to address the challenge of unemployment in Nigeria seem to be inadequate. The desired structural transformation which is expected to absorb the excess labour in the economy is yet to be achieved. The agricultural sector accounts for almost half of the labour force with very low productivity. This could partly explain why the much anticipated structural transformation has not been achieved. A major reason for the low productivity is the fact that the production process is predominantly based on the use of traditional tools. In view of the underdeveloped nature of the agricultural sector, Nigeria still has huge potentials for productivity enhancement through modern technology. Aside from productivity enhancement, modern agriculture also stimulates both backward and forward linkages that promote investment and thus generate employment. Contrary to the apprehension usually expressed by many stake-holders about the adoption of modern technology by labour-abundant less-developed countries, this study showed that though there will be job loss initially, the reverse will be the case in the long-run. The outcome of this study will enhance the understanding of all stakeholders in the sector and also encourage them to adopt modern techniques of farming. It will also aid policy formulation at both sectoral and national levels. The recursive model and analysis adopted in the study is useful because it exhibits a unilateral cause-and-effect relationship which most simultaneous equation models do not. It enables the structural equations to be ordered in such a way that the first equation includes only predetermined variables on the right-hand side, while the solution for the final endogenous variable is completely determined by all equations of the system. The study examines the transmission channels and effect of modern agriculture on agricultural productivity and employment growth in Nigeria, via its forward and backward linkages. Using time series data spanning 1980 to 2014, the result of the analyses shows that: (i) a significant and positive relationship between agricultural productivity growth and modern agriculture; (ii) a significant and negative relationship between export price index and agricultural productivity growth; (iii) a significant and positive relationship between export and investment; and (iv) a significant and positive relationship between investment and employment growth. The unbalanced growth theory will be a good strategy to adopt by developing countries such as Nigeria.

Keywords: employment, modern agriculture, productivity, recursive model

Procedia PDF Downloads 271
6023 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images

Authors: Maher un Nisa, Ahsan Khawaja

Abstract:

Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.

Keywords: color fundus, retinal images, ultra-widefield, vessel detection

Procedia PDF Downloads 449
6022 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification

Procedia PDF Downloads 130
6021 Research of Concentratibility of Low Quality Bauxite Raw Materials

Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov

Abstract:

Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.

Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics

Procedia PDF Downloads 292
6020 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 140
6019 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 235
6018 Analysis of an Alternative Data Base for the Estimation of Solar Radiation

Authors: Graciela Soares Marcelli, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Claudineia Brazil, Rafael Haag

Abstract:

The sun is a source of renewable energy, and its use as both a source of heat and light is one of the most promising energy alternatives for the future. To measure the thermal or photovoltaic systems a solar irradiation database is necessary. Brazil still has a reduced number of meteorological stations that provide frequency tests, as an alternative to the radio data platform, with reanalysis systems, quite significant. ERA-Interim is a global fire reanalysis by the European Center for Medium-Range Weather Forecasts (ECMWF). The data assimilation system used for the production of ERA-Interim is based on a 2006 version of the IFS (Cy31r2). The system includes a 4-dimensional variable analysis (4D-Var) with a 12-hour analysis window. The spatial resolution of the dataset is approximately 80 km at 60 vertical levels from the surface to 0.1 hPa. This work aims to make a comparative analysis between the ERA-Interim data and the data observed in the Solarimmetric Atlas of the State of Rio Grande do Sul, to verify its applicability in the absence of an observed data network. The analysis of the results obtained for a study region as an alternative to the energy potential of a given region.

Keywords: energy potential, reanalyses, renewable energy, solar radiation

Procedia PDF Downloads 167
6017 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 208
6016 SHIFT: Examining Preservice Teachers’ Perceptions on Digital Citizenship Education

Authors: Cachanda K. Orellana

Abstract:

This study examined preservice teachers’ perceptions of their role in digital citizenship education. Data was gathered via surveys and coursework from the preservice teachers’ instructional technology course. Pre-service teachers were asked about their role in digital citizenship education during a unit on digital dilemmas. Findings suggest that teacher education programs should consider digital citizenship education as more than the acquisition of a set of skills and behaviors and prepare preservice teachers to support students’ ability to engage in ethical decision-making in digital spaces.

Keywords: digital citizenship, digital dilemmas, pre-service teachers, teacher education

Procedia PDF Downloads 176
6015 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 289
6014 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom

Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal

Abstract:

The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.

Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent

Procedia PDF Downloads 715
6013 The Polarization on Twitter and COVID-19 Vaccination in Brazil

Authors: Giselda Cristina Ferreira, Carlos Alberto Kamienski, Ana Lígia Scott

Abstract:

The COVID-19 pandemic has enhanced the anti-vaccination movement in Brazil, supported by unscientific theories and false news and the possibility of wide communication through social networks such as Twitter, Facebook, and YouTube. The World Health Organization (WHO) classified the large volume of information on the subject against COVID-19 as an Infodemic. In this paper, we present a protocol to identify polarizing users (called polarizers) and study the profiles of Brazilian polarizers on Twitter (renamed to X some weeks ago). We analyzed polarizing interactions on Twitter (in Portuguese) to identify the main polarizers and how the conflicts they caused influenced the COVID-19 vaccination rate throughout the pandemic. This protocol uses data from this social network, graph theory, Java, and R-studio scripts to model and analyze the data. The information about the vaccination rate was obtained in a public database for the government called OpenDataSus. The results present the profiles of Twitter’s Polarizer (political position, gender, professional activity, immunization opinions). We observed that social and political events influenced the participation of these different profiles in conflicts and the vaccination rate.

Keywords: Twitter, polarization, vaccine, Brazil

Procedia PDF Downloads 80
6012 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 133
6011 Alternative Islamic Finance Channels and Instruments: An Evaluation of the Potential and Considerations in Light of Sharia Principles

Authors: Tanvir A. Uddin, Blake Goud

Abstract:

Emerging trends in FinTech-enabled alternative finance, which includes channels and instruments emerging outside the traditional financial system, heralds unprecedented opportunities to improve financial intermediation and increase access to finance. With widespread criticism of the mainstream Islamic banking and finance sector as either mimicking the conventional system, failing to achieve inclusive growth or both, industry stakeholders are turning to technology to show that finance can be done differently. This paper will outline the critical elements for successful deployment of technology to maximize benefit and minimize potential for harm from introduction of Islamic FinTech and propose recommendations for Islamic financial institutions, FinTech companies, regulators and other stakeholders who are integrating or who are considering introducing FinTech solutions. The paper will present an overview of literature, present relevant case studies and summarize the lessons from interviews conducted with Islamic FinTech founders from around the world. With growing central bank concerns about leveraged loans and ballooning private credit markets globally (estimated at $1.4 trillion), current and future Islamic FinTech operators are at risk of contributing to the problems they aim to solve by operating in a 'shadow banking' system. The paper will show that by systematising a robust theory of change linked to positive outcomes, utilising objective impact frameworks (e.g., the Impact Measurement Project) and instilling a risk management culture that is proactive about potential social harm (e.g., irresponsible lending), FinTech can enable the Islamic finance industry to support positive social impact and minimize harm in support of the maqasid. The adoption of FinTech within the Islamic finance context is still at a nascent stage and the recommendations we provide based on the limited experience to date will help address some of the major cross-cutting issues related to FinTech. Further research will be needed to elucidate in more detail issues relating to individual sectors and countries within the broader global Islamic finance industry.

Keywords: alternative finance, FinTech, Islamic finance, maqasid, theory of change

Procedia PDF Downloads 161
6010 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 199
6009 Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity

Authors: Jean-Francois Feller

Abstract:

The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC.

Keywords: volatolome, quantum resistive vapour sensor, nanostructured conductive polymer nanocomposites, olfactive diagnosis

Procedia PDF Downloads 27
6008 VR/AR Applications in Personalized Learning

Authors: Andy Wang

Abstract:

Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).

Keywords: personalized learning, online education, hands-on practice, VR/AR tools

Procedia PDF Downloads 74
6007 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry

Authors: Hung Nguyen

Abstract:

With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.

Keywords: culture, information exchange, supply chain orientation, similarity

Procedia PDF Downloads 362
6006 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change

Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla

Abstract:

The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.

Keywords: pump-out boat, marine water, solar-electric, zero emissions

Procedia PDF Downloads 133
6005 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD

Procedia PDF Downloads 204
6004 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 256
6003 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 268
6002 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 261
6001 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 372
6000 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment

Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu

Abstract:

Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.

Keywords: dissolvable magnesium, coating, plasma electrolytic oxide, sealer

Procedia PDF Downloads 116
5999 An Exploratory Study to Appraise the Current Challenges and Limitations Faced in Applying and Integrating the Historic Building Information Modelling Concept for the Management of Historic Buildings

Authors: Oluwatosin Adewale

Abstract:

The sustainability of built heritage has become a relevant issue in recent years due to the social and economic values associated with these buildings. Heritage buildings provide a means for human perception of culture and represent a legacy of long-existing history; they define the local character of the social world and provide a vital connection to the past with their associated aesthetical and communal benefits. The identified values of heritage buildings have increased the importance of conservation and the lifecycle management of these buildings. The recent developments of digital design technology in engineering and the built environment have led to the adoption of Building Information Modelling (BIM) by the Architecture, Engineering, Construction, and Operations (AECO) industry. BIM provides a platform for the lifecycle management of a construction project through effective collaboration among stakeholders and the analysis of a digital information model. This growth in digital design technology has also made its way into the field of architectural heritage management in the form of Historic Building Information Modelling (HBIM). A reverse engineering process for digital documentation of heritage assets that draws upon similar information management processes as the BIM process. However, despite the several scientific and technical contributions made to the development of the HBIM process, it doesn't remain easy to integrate at the most practical level of heritage asset management. The main objective identified under the scope of the study is to review the limitations and challenges faced by heritage management professionals in adopting an HBIM-based asset management procedure for historic building projects. This paper uses an exploratory study in the form of semi-structured interviews to investigate the research problem. A purposive sample of heritage industry experts and professionals were selected to take part in a semi-structured interview to appraise some of the limitations and challenges they have faced with the integration of HBIM into their project workflows. The findings from this study will present the challenges and limitations faced in applying and integrating the HBIM concept for the management of historic buildings.

Keywords: building information modelling, built heritage, heritage asset management, historic building information modelling, lifecycle management

Procedia PDF Downloads 109
5998 The Measurement of the Multi-Period Efficiency of the Turkish Health Care Sector

Authors: Erhan Berk

Abstract:

The purpose of this study is to examine the efficiency and productivity of the health care sector in Turkey based on four years of health care cross-sectional data. Efficiency measures are calculated by a nonparametric approach known as Data Envelopment Analysis (DEA). Productivity is measured by the Malmquist index. The research shows how DEA-based Malmquist productivity index can be operated to appraise the technology and productivity changes resulted in the Turkish hospitals which are located all across the country.

Keywords: data envelopment analysis, efficiency, health care, Malmquist Index

Procedia PDF Downloads 339