Search results for: energy modeling tools
588 Microstructure Evolution and Pre-transformation Microstructure Reconstruction in Ti-6Al-4V Alloy
Authors: Shreyash Hadke, Manendra Singh Parihar, Rajesh Khatirkar
Abstract:
In the present investigation, the variation in the microstructure with the changes in the heat treatment conditions i.e. temperature and time was observed. Ti-6Al-4V alloy was subject to solution annealing treatments in β (1066C) and α+β phase (930C and 850C) followed by quenching, air cooling and furnace cooling to room temperature respectively. The effect of solution annealing and cooling on the microstructure was studied by using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The chemical composition of the β phase for different conditions was determined with the help of energy dispersive spectrometer (EDS) attached to SEM. Furnace cooling resulted in the development of coarser structure (α+β), while air cooling resulted in much finer structure with widmanstatten morphology of α at the grain boundaries. Quenching from solution annealing temperature formed α’ martensite, their proportion being dependent on the temperature in β phase field. It is well known that the transformation of β to α follows Burger orientation relationship (OR). In order to reconstruct the microstructure of parent β phase, a MATLAB code was written using neighbor-to-neighbor, triplet method and Tari’s method. The code was tested on the annealed samples (1066C solution annealing temperature followed by furnace cooling to room temperature). The parent phase data thus generated was then plotted using the TSL-OIM software. The reconstruction results of the above methods were compared and analyzed. The Tari’s approach (clustering approach) gave better results compared to neighbor-to-neighbor and triplet method but the time taken by the triplet method was least compared to the other two methods.Keywords: Ti-6Al-4V alloy, microstructure, electron backscattered diffraction, parent phase reconstruction
Procedia PDF Downloads 451587 Requirements to Establish a Taxi Sharing System in an Urban Area
Authors: Morteza Ahmadpur, Ilgin Gokasar, Saman Ghaffarian
Abstract:
That Transportation system plays an important role in management of societies is an undeniable fact and it is one of the most challenging issues in human beings routine life. But by increasing the population in urban areas, the demand for transportation modes also increase. Accordingly, it is obvious that more flexible and dynamic transportation system is required to satisfy peoples’ requirements. Nowadays, there is significant increase in number of environmental issues all over the world which is because of human activities. New technological achievements bring new horizons for humans and so they changed the life style of humans in every aspect of their life and transportation is not an exception. By using new technology, societies can modernize their transportation system and increase the feasibility of their system. Real–time Taxi sharing systems is one of the novel and most modern systems all over the world. For establishing this kind of system in an urban area it is required to use the most advanced technologies in a transportation system. GPS navigation devices, computers and social networks are just some parts of this kind of system. Like carpooling, real-time taxi sharing is one of the best ways to better utilize the empty seats in most cars and taxis, thus decreasing energy consumption and transport costs. It can serve areas not covered by a public transit system and act as a transit feeder service. Taxi sharing is also capable of serving one-time trips, not only recurrent commute trips or scheduled trips. In this study, we describe the requirements and parameters that we need to establish a useful real-time ride sharing system for an urban area. The parameters and requirements of this study can be used in any urban area.Keywords: transportation, intelligent transportation systems, ride-sharing, taxi sharing
Procedia PDF Downloads 431586 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises
Procedia PDF Downloads 255585 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019
Authors: Rob Leslie, Taher Karimian
Abstract:
The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.Keywords: ARR 2019, blockage, culverts, methodology
Procedia PDF Downloads 373584 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions
Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant
Procedia PDF Downloads 507583 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region
Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha
Abstract:
Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.Keywords: climate change, migration, rural productivity, semiarid region
Procedia PDF Downloads 355582 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies
Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar
Abstract:
Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.Keywords: microfluidic device, minitab, statistical optimization, response surface methodology
Procedia PDF Downloads 76581 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations
Authors: Karthikeyan Kalirajan, Ashok Joshi
Abstract:
An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection
Procedia PDF Downloads 430580 Development and Evaluation of a Psychological Adjustment and Adaptation Status Scale for Breast Cancer Survivors
Authors: Jing Chen, Jun-E Liu, Peng Yue
Abstract:
Objective: The objective of this study was to develop a psychological adjustment and adaptation status scale for breast cancer survivors, and to examine the reliability and validity of the scale. Method: 37 breast cancer survivors were recruited in qualitative research; a five-subject theoretical framework and an item pool of 150 items of the scale were derived from the interview data. In order to evaluate and select items and reach a preliminary validity and reliability for the original scale, the suggestions of study group members, experts and breast cancer survivors were taken, and statistical methods were used step by step in a sample of 457 breast cancer survivors. Results: An original 24-item scale was developed. The five dimensions “domestic affections”, “interpersonal relationship”, “attitude of life”, “health awareness”, “self-control/self-efficacy” explained 58.053% of the total variance. The content validity was assessed by experts, the CVI was 0.92. The construct validity was examined in a sample of 264 breast cancer survivors. The fitting indexes of confirmatory factor analysis (CFA) showed good fitting of the five dimensions model. The criterion-related validity of the total scale with PTGI was satisfactory (r=0.564, p<0.001). The internal consistency reliability and test-retest reliability were tested. Cronbach’s alpha value (0.911) showed a good internal consistency reliability, and the intraclass correlation coefficient (ICC=0.925, p<0.001) showed a satisfactory test-retest reliability. Conclusions: The scale was brief and easy to understand, was suitable for breast cancer patients whose physical strength and energy were limited.Keywords: breast cancer survivors, rehabilitation, psychological adaption and adjustment, development of scale
Procedia PDF Downloads 514579 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 295578 Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer.Keywords: tribo-oxide layer, wear, mechanically mixed layer, zircaloy
Procedia PDF Downloads 91577 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures
Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.
Abstract:
Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays
Procedia PDF Downloads 161576 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 55575 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study
Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh
Abstract:
In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.
Procedia PDF Downloads 24574 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver
Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro
Abstract:
This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance
Procedia PDF Downloads 395573 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 242572 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock
Abstract:
This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength
Procedia PDF Downloads 272571 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems
Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah
Abstract:
Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing
Procedia PDF Downloads 344570 Analyzing the Shearing-Layer Concept Applied to Urban Green System
Authors: S. Pushkar, O. Verbitsky
Abstract:
Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture
Procedia PDF Downloads 583569 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.Keywords: capacity, cooperation, industrial symbiosis, pricing
Procedia PDF Downloads 219568 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing
Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale
Abstract:
The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability
Procedia PDF Downloads 130567 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 89566 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 125565 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers
Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley
Abstract:
Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting
Procedia PDF Downloads 227564 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline
Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu
Abstract:
The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion
Procedia PDF Downloads 407563 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 333562 Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells
Authors: Achim Kampker, Heiner Hans Heimes, Nemanja Sarovic, Jan-Philip Ganser, Saskia Wessel, Christoph Lienemann
Abstract:
The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design´s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures.Keywords: battery module, prismatic lithium-ion battery cell, product architecture, production process, remanufacturing, flexibility
Procedia PDF Downloads 272561 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling
Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov
Abstract:
Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome
Procedia PDF Downloads 83560 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy
Procedia PDF Downloads 265559 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students
Authors: Lily Ranjbar, Haori Yang
Abstract:
Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education
Procedia PDF Downloads 94