Search results for: zero energy building; energy efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15757

Search results for: zero energy building; energy efficiency

9937 An Exploratory Study to Understand the Economic Opportunities from Climate Change

Authors: Sharvari Parikh

Abstract:

Climate change has always been looked upon as a threat. Increased use of fossil fuels, depletion of bio diversity, certain human activities, rising levels of Greenhouse Gas (GHG) emissions are the factors that have caused climate change. Climate change is creating new risks and aggravating the existing ones. The paper focuses on breaking the stereotypical perception of climate change and draws attention towards the constructive side of it. Researches around the world have concluded that climate change has provided us with many untapped opportunities. The next 15 years will be crucial, as it is in our hands whether we are able to grab these opportunities or just let the situation get worse. The world stands at a stage where we cannot think of making a choice between averting climate change and promoting growth and development. In fact, the solution to climate change itself has got economic opportunities. The data evidences from the paper show how we can create the opportunity to improve the lives of the world’s population at large through structural change which will promote environment friendly investments. Rising Investment in green energy and increased demand of climate friendly products has got ample of employment opportunities. Old technologies and machinery which are employed today lack efficiency and demand huge maintenance because of which we face high production cost. This can be drastically brought down by adaptation of Green technologies which are more accessible and affordable. Overall GDP of the world has been heavily affected in aggravating the problems arising out of increasing weather problems. Shifting to green economy can not only eliminate these costs but also build a sound economy. Accelerating the economy in direction of low-carbon future can lessen the burdens such as subsidies for fossil fuels, several public debts, unemployment, poverty, reduce healthcare expenses etc. It is clear that the world will be dragged into the ‘Darker phase’ if the current trends of fossil fuels and carbon are being consumed. Switching to Green economy is the only way in which we can lift the world from darker phase. Climate change has opened the gates for ‘Green and Clean economy’. It will also bring countries of the world together in achieving the common goal of Green Economy.

Keywords: climate change, economic opportunities, green economy, green technology

Procedia PDF Downloads 227
9936 Towards Resource Sufficiency in Engineering Education in Sub-Saharan Africa

Authors: Iyabosola B. Oronti, Adeoluwawale A. Adewusi, Olubusola O. Nuga

Abstract:

Sub-Saharan Africa has long been known to be a region rife with poverty, inadequate health facilities, food shortages, high transport and communication costs and very low pace of infrastructural and technological development. These factors combined have led to decades of resource paucity in engineering education. Engineering is core to global development and building of capacity in engineering education with available resources in sub-Saharan Africa has become imperative. This paper identifies core political issues and policy shifts contributing adversely to this present state of affairs, and also explores the offshoots of the changing global political environment as it affects engineering education in the developing nations of sub-Saharan Africa. Opportunities for instituting resource sufficiency are examined and corrective measures that can be taken to resuscitate and stabilize the educational sector in the region are also suggested.

Keywords: capacity building, engineering education, resource sufficiency, sub-Saharan Africa

Procedia PDF Downloads 416
9935 Thermal Comfort Study of School Buildings in South Minahasa Regency Case Study: SMA Negeri 1 Amurang, Indonesia

Authors: Virgino Stephano Moniaga

Abstract:

Thermal comfort inside a building can affect students in their learning process. The learning process of students can be improved if the condition of the classrooms is comfortable. This study will be conducted in SMA Negeri 1 Amurang which is a senior high school building located in South Minahasa Regency. Based on preliminary survey, generally, students were not satisfied with the existing level of comfort, which subsequently affected the teaching and learning process in the classroom. The purpose of this study is to analyze the comfort level of classrooms occupants and recommend building design solutions that can improve the thermal comfort of classrooms. In this study, three classrooms will be selected for thermal comfort measurements. The thermal comfort measurements will be taken in naturally ventilated classrooms. The measured data comprise of personal data (clothing and students activity), air humidity, air temperature, mean radiant temperature and air flow velocity. Simultaneously, the students will be asked to fill out a questionnaire that asked about the level of comfort that was felt at the time. The results of field measurements and questionnaires will be analyzed based on the PMV and PPD indices. The results of the analysis will decide whether the classrooms are comfortable or not. This study can be continued to obtain a more optimal design solution to improve the thermal comfort of the classrooms. The expected results from this study can improve the quality of teaching and learning process between teachers and students which can further assist the government efforts to improve the quality of national education.

Keywords: classrooms, PMV, PPD, thermal comfort

Procedia PDF Downloads 297
9934 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 361
9933 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts

Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh

Abstract:

In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.

Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow

Procedia PDF Downloads 273
9932 Production of Friendly Environmental Material as Building Element from Plastic Waste

Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel

Abstract:

The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.

Keywords: LWAC, plastic waste, thermal property, thermal insulation

Procedia PDF Downloads 409
9931 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 270
9930 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV

Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.

Keywords: PMSG, VTOL, UAV, high specific power density

Procedia PDF Downloads 498
9929 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments

Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika

Abstract:

In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.

Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment

Procedia PDF Downloads 332
9928 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility

Procedia PDF Downloads 344
9927 Highly Glazed Office Spaces: Simulated Visual Comfort vs Real User Experiences

Authors: Zahra Hamedani, Ebrahim Solgi, Henry Skates, Gillian Isoardi

Abstract:

Daylighting plays a pivotal role in promoting productivity and user satisfaction in office spaces. There is an ongoing trend in designing office buildings with a high proportion of glazing which relatively increases the risk of high visual discomfort. Providing a more realistic lighting analysis can be of high value at the early stages of building design when necessary changes can be made at a very low cost. This holistic approach can be achieved by incorporating subjective evaluation and user behaviour in computer simulation and provide a comprehensive lighting analysis. In this research, a detailed computer simulation model has been made using Radiance and Daysim. Afterwards, this model was validated by measurements and user feedback. The case study building is the school of science at Griffith University, Gold Coast, Queensland, which features highly glazed office spaces. In this paper, the visual comfort predicted by the model is compared with a preliminary survey of the building users to evaluate how user behaviour such as desk position, orientation selection, and user movement caused by daylight changes and other visual variations can inform perceptions of visual comfort. This work supports preliminary design analysis of visual comfort incorporating the effects of gaze shift patterns and views with the goal of designing effective layout for office spaces.

Keywords: lighting simulation, office buildings, user behaviour, validation, visual comfort

Procedia PDF Downloads 192
9926 A Case Study of Building Behavior Damaged during 26th Oct, 2015 Earthquake in Northern Areas of Pakistan

Authors: Rahmat Ali, Amjad Naseer, Abid A. Shah

Abstract:

This paper is an attempt to presents the performance of building observed during 26th Oct, 2015 earthquake in District Swat and Shangla region. Most of the buildings in the earthquake hit areas were built with Rubble stone masonry, dress Stone Masonry, brick masonry with and without RC column, Brick masonry with RC beams and column, Block Masonry with and without RC column. It was found that most of the buildings were built without proper supervision and without following any codes. A majority of load bearing masonry walls were highly affected during the earthquake. The load bearing walls built with rubble stone masonry were collapsed resulting huge damages and loss of property and life. Load bearing bricks masonry walls were also affected in most of the region. In some residential buildings the bricks were crushed in a single brick walls. Severe cracks were also found in double brick masonry walls. In RC frame structure beams and columns were also seriously affected. A majority of building structures were non-engineered. Some buildings designed by unskilled local consultants were also affected during the earthquake. Several architectural and structural mistakes were also found in various buildings designed by local consultant. It was found that the structures were collapsed prematurely either because of unskillful labor and using substandard materials or avoiding delicate repair, maintenance, and health monitoring activities because of lack of available sophisticated technology in our country.

Keywords: cracks, collapse, earthquake, masonry, repair

Procedia PDF Downloads 480
9925 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 71
9924 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes

Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush

Abstract:

Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.

Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing

Procedia PDF Downloads 204
9923 In silico Model of Transamination Reaction Mechanism

Authors: Sang-Woo Han, Jong-Shik Shin

Abstract:

w-Transaminase (w-TA) is broadly used for synthesizing chiral amines with a high enantiopurity. However, the reaction mechanism of w-TA has been not well studied, contrary to a-transaminase (a-TA) such as AspTA. Here, we propose in silico model on the reaction mechanism of w-TA. Based on the modeling results which showed large free energy gaps between external aldimine and quinonoid on deamination (or ketimine and quinonoid on amination), withdrawal of Ca-H seemed as a critical step which determines the reaction rate on both amination and deamination reactions, which is consistent with previous researches. Hyperconjugation was also observed in both external aldimine and ketimine which weakens Ca-H bond to elevate Ca-H abstraction.

Keywords: computational modeling, reaction intermediates, w-transaminase, in silico model

Procedia PDF Downloads 528
9922 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 304
9921 Tuneability Sub-10-nm WO3 Nano-Flakes and Their Electrical Properties

Authors: S. Zhuiykov, E. Kats

Abstract:

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nano scale using energy dispersive X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nano-structures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550ºC possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.

Keywords: electrical properties, layered semiconductors, nano-flake, sol-gel, exfoliation WO3

Procedia PDF Downloads 226
9920 Biogas Production from Kitchen Waste for a Household Sustainability

Authors: Vuiswa Lucia Sethunya, Tonderayi Matambo, Diane Hildebrandt

Abstract:

South African’s informal settlements produce tonnes of kitchen waste (KW) per year which is dumped into the landfill. These landfill sites are normally located in close proximity to the household of the poor communities; this is a problem in which the young children from those communities end up playing in these landfill sites which may result in some health hazards because of methane, carbon dioxide and sulphur gases which are produced. To reduce this large amount of organic materials being deposited into landfills and to provide a cleaner place for those within the community especially the children, an energy conversion process such as anaerobic digestion of the organic waste to produce biogas was implemented. In this study, the digestion of various kitchen waste was investigated in order to understand and develop a system that is suitable for household use to produce biogas for cooking. Three sets of waste of different nutritional compositions were digested as per acquired in the waste streams of a household at mesophilic temperature (35ᵒC). These sets of KW were co-digested with cow dung (CW) at different ratios to observe the microbial behaviour and the system’s stability in a laboratory scale system. The gas chromatography-flame ionization detector analyses have been performed to identify and quantify the presence of organic compounds in the liquid samples from co-digested and mono-digested food waste. Acetic acid, propionic acid, butyric acid and valeric acid are the fatty acids which were studied. Acetic acid (1.98 g/L), propionic acid (0.75 g/L) and butyric acid (2.16g/L) were the most prevailing fatty acids. The results obtained from organic acids analysis suggest that the KW can be an innovative substituent to animal manure for biogas production. The faster degradation period in which the microbes break down the organic compound to produce the fatty acids during the anaerobic process of KW also makes it a better feedstock during high energy demand periods. The C/N ratio analysis showed that from the three waste streams the first stream containing vegetables (55%), fruits (16%), meat (25%) and pap (4%) yielded more methane-based biogas of 317mL/g of volatile solids (VS) at C/N of 21.06. Generally, this shows that a household will require a heterogeneous composition of nutrient-based waste to be fed into the digester to acquire the best biogas yield to sustain a households cooking needs.

Keywords: anaerobic digestion, biogas, kitchen waste, household

Procedia PDF Downloads 174
9919 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: construction ecology, industrial ecology, urban topology, environmental planning

Procedia PDF Downloads 104
9918 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems

Authors: Eze R. Onukwugha

Abstract:

The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.

Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling

Procedia PDF Downloads 60
9917 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment

Authors: Kweon Oh-Sang, Kim Heung-Youl

Abstract:

Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.

Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter

Procedia PDF Downloads 322
9916 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 170
9915 Approaches to Eco-Friendly Architecture: Modules Assembled Specially to Conserve

Authors: Arshleen Kaur, Sarang Barbarwar, Madhusudan Hamirwasia

Abstract:

Sustainable architecture is going to be the soul of construction in the near future, with building material as a vital link connecting sustainability to construction. The priority in Architecture has shifted from having a lesser negative footprint to having a positive footprint on Earth. The design has to be eco-centric as well as anthro-centric so as to attain its true purpose. Brick holds the same importance like a cell holds in one’s body. The study focuses on this basic building block with an experimental material and technique known as Module Assembled Specially to Conserve (MASC). The study explores the usage and construction of these modules in the construction of buildings. It also shows the impact assessment of the modules on the environment and its significance in reducing the carbon footprint of the construction industry. The aspects like cost-effectiveness, ease of working and reusability of MASC have been studied as well.

Keywords: anthro-centric, carbon footprint, eco-centric, sustainable

Procedia PDF Downloads 162
9914 Exploring the Association between Risks Emerging from Climate Change Scenarios and the Built Environment

Authors: Abdullah M. Alzahrani, Abdel Halim Boussabaine

Abstract:

There is an international consensus on the climate change in the entire world and this is as a result of the combination of the natural factors, such as volcanoes and hurricanes with increased of human activity on the earth, such as industrial renaissance. Where this solidarity increases emissions of greenhouse gases GHGs that considered as the main driver of climate change scenarios and related emerging risks and impacts on buildings. These climatic risks including damages, disruption and disquiet are set to increase and it is considered as the main challenges and difficulties facing built environment due to major implications on assets sector. Consequently, the threat from climate change patterns has a significant impact on a variety of complex human decisions, which affect all aspects of living. Understanding the relationship between buildings and such risks arising from climate change scenarios on buildings are the key in insuring the optimal timing and design of policies and systems, which affect all aspects of the built environment. This paper will uncovering this correlation between emerging climate change risks and the building assets. In addition, how these emerging risks can be classified in practical way in terms of their impact type on buildings. Hence, this mapping will assist professionals and interested parties in the building sector to cope with such risks in several systematic ways including development and designing of mitigation and adaptation strategies and processes of design, specification, construction, and operation; all these leads to successful management of assets.

Keywords: climate change, climate change risks, built environment, building sector, impacts

Procedia PDF Downloads 339
9913 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 208
9912 Feasibilities for Recovering of Precious Metals from Printed Circuit Board Waste

Authors: Simona Ziukaite, Remigijus Ivanauskas, Gintaras Denafas

Abstract:

Market development of electrical and electronic equipment and a short life cycle is driven by the increasing waste streams. Gold Au, copper Cu, silver Ag and palladium Pd can be found on printed circuit board. These metals make up the largest value of printed circuit board. Therefore, the printed circuit boards scrap is valuable as potential raw material for precious metals recovery. A comparison of Cu, Au, Ag, Pd recovery from waste printed circuit techniques was selected metals leaching of chemical reagents. The study was conducted using the selected multistage technique for Au, Cu, Ag, Pd recovery of printed circuit board. In the first and second metals leaching stages, as the elution reagent, 2M H2SO4 and H2O2 (35%) was used. In the third stage, leaching of precious metals used solution of 20 g/l of thiourea and 6 g/l of Fe2 (SO4)3. Verify the efficiency of the method was carried out the metals leaching test with aqua regia. Based on the experimental study, the leaching efficiency, using the preferred methodology, 60 % of Au and 85,5 % of Cu dissolution was achieved. Metals leaching efficiency after waste mechanical crushing and thermal treatment have been increased by 1,7 times (40 %) for copper, 1,6 times (37 %) for gold and 1,8 times (44 %) for silver. It was noticed that, the Au amount in old (> 20 years) waste is 17 times more, Cu amount - 4 times more, and Ag - 2 times more than in the new (< 1 years) waste. Palladium in the new printed circuit board waste has not been found, however, it was established that from 1 t of old printed circuit board waste can be recovered 1,064 g of Pd (leaching with aqua regia). It was found that from 1 t of old printed circuit board waste can be recovered 1,064 g of Ag. Precious metals recovery in Lithuania was estimated in this study. Given the amounts of generated printed circuit board waste, the limits for recovery of precious metals were identified.

Keywords: leaching efficiency, limits for recovery, precious metals recovery, printed circuit board waste

Procedia PDF Downloads 376
9911 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman

Procedia PDF Downloads 178
9910 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 62
9909 Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution

Authors: Manisha Choudhary, Sudarsan Neogi

Abstract:

Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment.

Keywords: adsorption, biosorbent, cactus, malachite green

Procedia PDF Downloads 354
9908 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 232