Search results for: learning paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7611

Search results for: learning paths

1911 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 136
1910 The Synchronous Online Environment: Impact on Instructor’s Empathy

Authors: Lystra Huggins

Abstract:

The COVID-19 pandemic affected all facets of life, including pedagogical strategies and perceptual experiences for both instructors and students. While there have also been many challenges and advantages to the online teaching and learning environment, when students’ cameras are on, the daily experiences of students’ lives have been magnified during synchronous online instruction and have served to humanize them in the classroom. This means that students’ everyday experiences, now often on display on ZOOM, allow instructors to see the realities of students. They include children running, spouses walking by parents cooking or sitting on the sofa following the lecture, students at their place of employment or driving from work, or having their classroom engagement interrupted by a delivery. Students’ backgrounds and spaces create unique dynamics during synchronous instruction, which offers a holistic view of them outside academia. This research explores whether witnessing students’ daily experiences leads to empathy from their instructors and whether it results in a greater understanding of students’ challenges and circumstances. Ultimately, it will amplify instructors’ stance on the advantages of students having their cameras on during synchronous online classes to develop a connection with the instructor and a more cohesive classroom environment.

Keywords: instructor’s empathy, synchronous class, asynchronous class, online environment

Procedia PDF Downloads 100
1909 Encounters of English First Additional Language Teachers in Rural Schools

Authors: Rendani Mercy Makhwathana

Abstract:

This paper intends to explore teachers' encounters when teaching English First Additional Language in rural public schools. Teachers are pillars of any education system around the globe. Educational transformations hinge on them as critical role players in the education system. Thus, teachers' encounters are worth consideration, for they impact learners' learning and the well-being of education in general. An exploratory qualitative approach was used in this paper. The population for this paper comprised all Foundation Phase teachers in the district. A purposive sample of 15 Foundation Phase teachers from five rural-based schools was used. Data were collected through classroom observation and individual face-to-face interviews. Data were categorized, analyzed, and interpreted. Amongst the revealed teachers' encounters are learners' inability to read and write and learners' lack of English language background and learners' lack of the vocabulary to express themselves. This paper recommends the provision of relevant resources and support to effectively teach English First Additional Language to enable learners' engagement and effective use of the English language.

Keywords: first additional language, english second language, medium of instruction, teacher professional development

Procedia PDF Downloads 84
1908 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition

Procedia PDF Downloads 339
1907 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 218
1906 Impact of COVID-19 on Study Migration

Authors: Manana Lobzhanidze

Abstract:

The COVID-19 pandemic has made significant changes in migration processes, notably changes in the study migration process. The constraints caused by the COVID-19 pandemic led to changes in the studying process, which negatively affected its efficiency. The educational process has partially or completely shifted to distance learning; Both labor and study migration have increased significantly in the world. The employment and education market has become global and consequently, a number of challenges have arisen for employers, researchers, and businesses. The role of preparing qualified personnel in achieving high productivity is justified, the benefits for employers and employees are assessed on the one hand, and the role of study migration for the country’s development is examined on the other hand. Research methods. The research is based on methods of analysis and synthesis, quantitative and qualitative, groupings, relative and mean quantities, graphical representation, comparison, analysis and etc. In-depth interviews were conducted with experts to determine quantitative and qualitative indicators. Research findings. Factors affecting study migration are analysed in the paper and the environment that stimulates migration is explored. One of the driving forces of migration is considered to be the desire for receiving higher pay. Levels and indicators of study migration are studied by country. Comparative analysis has found that study migration rates are high in countries where the price of skilled labor is high. The productivity of individuals with low skills is low, which negatively affects the economic development of countries. It has been revealed that students leave the country to improve their skills during study migration. The process mentioned in the article is evaluated as a positive event for a developing country, as individuals are given the opportunity to share the technology of developed countries, gain knowledge, and then introduce it in their own country. The downside of study migration is the return of a small proportion of graduates from developed economies to their home countries. The article concludes that countries with emerging economies devote less resources to research and development, while this is a priority in developed countries, allowing highly skilled individuals to use their skills efficiently. The paper studies the national education system examines the level of competition in the education market and the indicators of educational migration. The level of competition in the education market and the indicators of educational migration are studied. The role of qualified personnel in achieving high productivity is substantiated, the benefits of employers and employees are assessed on the one hand, and the role of study migration in the development of the country is revealed on the other hand. The paper also analyzes the level of competition in the education and labor markets and identifies indicators of study migration. During the pandemic period, there was a great demand for the digital technologies. Open access to a variety of comprehensive platforms will significantly reduce study migration to other countries. As a forecast, it can be said that the intensity of the use of e-learning platforms will be increased significantly in the post-pandemic period. The paper analyzes the positive and negative effects of study migration on economic development, examines the challenges of study migration in light of the COVID-19 pandemic, suggests ways to avoid negative consequences, and develops recommendations for improving the study migration process in the post-pandemic period.

Keywords: study migration, COVID-19 pandemic, factors affecting migration, economic development, post-pandemic migration

Procedia PDF Downloads 129
1905 Toward Automatic Chest CT Image Segmentation

Authors: Angely Sim Jia Wun, Sasa Arsovski

Abstract:

Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.

Keywords: lung segmentation, binary masks, U-Net, medical software tools

Procedia PDF Downloads 101
1904 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 179
1903 Information Communication Technology in Early Childhood Education: An Assessment of the Quality of ICT in the New Mega Primary Schools in Ondo State, Southwestern Nigeria

Authors: Oluyemi Christianah Ojo

Abstract:

This study seeks to investigate the quality of ICT provided in the new Caring Heart schools in Ondo State, Nigeria. The population for the study was all caring Heart Mega Schools in Ondo State, Nigeria. Research questions were generated; two instruments CCCMS and TQCUC were used to elicit information from the schools and the teachers. The study adopts descriptive survey approach. The studies revealed and concluded that ICT components were available and adequate in these schools, Charts showing ICT components and other forms of computer devices used as instructional materials were available but were not adequate; teachers teaching computer studies are competent in the delivery of instructions and in handling computer gadgets in the laboratory. The study recommended the provision of steady electricity, uninterrupted internet facilities and provision of adequate ICT components and charts for effective teaching delivery and learning.

Keywords: facilities, information communication technology, mega primary school, primary education

Procedia PDF Downloads 300
1902 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System

Authors: Yan Li

Abstract:

Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.

Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students

Procedia PDF Downloads 78
1901 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools

Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz

Abstract:

The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.

Keywords: hearing aids, hearing aids maintenance skill, hearing impaired children, motion graphics

Procedia PDF Downloads 163
1900 Social Stratification in Dubai and Its Effects on Higher Education

Authors: P. J. Moore-Jones

Abstract:

Emirati students studying at the University of the Emirates, one of three major public institutions of higher learning in the United Arab Emirates (UAE), have a wide demographic of faculty members teaching them an equally wide variety of courses. These faculty members bring with them their own cultural assumptions, methods, expectations, educational practices and use of language. The history of multiculturalism in the UAE coupled with the contemporary multiculturalism that exists in higher education Dubai create intriguing phenomena within the classroom. This study seeks to delve into students’ and faculty members’ perceptions of the social stratification that exist in this context. Data were collected via semi-structured interviews with both and analyzed from an interpretive perspective. Findings suggest the social stratification with is deeply-seeded in the multicultural history of the region and country are reflected in the everyday interworkings of education in modern day Dubai. The relevance of this research lies in that these findings can provide valuable insights into not only the attitudes and perceptions of these Emirati students might also be applicable to any of those student populations may exist.

Keywords: social stratification, intercultural competence, Dubai, United Arab Emirates

Procedia PDF Downloads 243
1899 The Role of Executive Attention and Literacy on Consumer Memory

Authors: Fereshteh Nazeri Bahadori

Abstract:

In today's competitive environment, any company that aims to operate in a market, whether industrial or consumer markets, must know that it cannot address all the tastes and demands of customers at once and serve them all. The study of consumer memory is considered an important subject in marketing research, and many companies have conducted studies on this subject and the factors affecting it due to its importance. Therefore, the current study tries to investigate the relationship between consumers' attention, literacy, and memory. Memory has a very close relationship with learning. Memory is the collection of all the information that we have understood and stored. One of the important subjects in consumer behavior is information processing by the consumer. One of the important factors in information processing is the mental involvement of the consumer, which has attracted a lot of attention in the past two decades. Since consumers are the turning point of all marketing activities, successful marketing begins with understanding why and how consumers behave. Therefore, in the current study, the role of executive attention and literacy on consumers' memory has been investigated. The results showed that executive attention and literacy would play a significant role in the long-term and short-term memory of consumers.

Keywords: literacy, consumer memory, executive attention, psychology of consumer behavior

Procedia PDF Downloads 101
1898 Prospective Analytical Cohort Study to Investigate a Physically Active Classroom-Based Wellness Programme to Propose a Mechanism to Meet Societal Need for Increased Physical Activity Participation and Positive Subjective Well-Being amongst Adolescent

Authors: Aileen O'loughlin

Abstract:

‘Is Everybody Going WeLL?’ (IEGW?) is a 33-hour classroom-based initiative created to a) explore values and how they impact on well-being, b) encourage adolescents to connect with their community, and c) provide them with the education to encourage and maintain a lifetime love of physical activity (PA) to ensure beneficial effects on their personal well-being. This initiative is also aimed at achieving sustainable education and aligning with the United Nation’s Sustainable Development Goals numbers 3 and 4. The classroom is a unique setting in which adolescents’ PA participation can be positively influenced through fun PA policies and initiatives. The primary purpose of this research is to evaluate a range of psychosocial and PA outcomes following the 33-hour education programme. This research examined the impact of a PA and well-being programme consisting of either a 60minute or 80minute class, depending on the timetable structure of the school, delivered once a week. Participant outcomes were measured using validated questionnaires regarding Self-esteem, Mental Health Literacy (MHL) and Daily Physical Activity Participation. These questionnaires were administered at three separate time points; baseline, mid-intervention, and post intervention. Semi-structured interviews with participating teachers regarding adherence and participants’ attitudes were completed post-intervention. These teachers were randomly selected for interview. This perspective analytical cohort study included 235 post-primary school students between 11-13 years of age (100 boys and 135 girls) from five public Irish post-primary schools. Three schools received the intervention only; a 33hour interactive well-being learning unit, one school formed a control group and one school had participants in both the intervention and control group. Participating schools were a convenience sample. Data presented outlines baseline data collected pre-participation (0 hours completed). N = 18 junior certificate students returned all three questionnaires fully completed for a 56.3% return rate from 1 school, Intervention School #3. 94.4% (n = 17) of participants enjoy taking part in some form of PA, however only 5.5% (n = 1) of the participants took part in PA every day of the previous 7 days and only 5.5% (n = 1) of those surveyed participated in PA every day during a normal week. 55% (n = 11) had a low level of self-esteem, 50% (n = 9) fall within the normal range of self-esteem, and n = 0 surveyed demonstrated a high level of self-esteem. Female participants’ Mean score was higher than their male counterparts when MHL was compared. Correlation analyses revealed a small association between Self-esteem and Happiness (r = 0.549). Positive correlations were also revealed between MHL and Happiness, MHL and Self-esteem and Self-esteem and 60+ minutes of PA completed daily. IEGW? is a classroom-based with simple methods easy to implement, replicate and financially viable to both public and private schools. It’s unique dataset will allow for the evaluation of a societal approach to the psycho-social well-being and PA participation levels of adolescents. This research is a work in progress and future work is required to learn how to best support the implementation of ‘Is Everybody Going WeLL?’ as part of the school curriculum.

Keywords: education, life-long learning, physical activity, psychosocial well-being

Procedia PDF Downloads 120
1897 Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment

Authors: Ana B. Vivas, Antonia Ypsilanti, Aristea I. Ladas, Angeles F. Estevez

Abstract:

Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia.

Keywords: mild cognitive impairment, working memory, differential outcomes, cognitive process

Procedia PDF Downloads 465
1896 Research on Straightening Process Model Based on Iteration and Self-Learning

Authors: Hong Lu, Xiong Xiao

Abstract:

Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.

Keywords: straightness, straightening stroke, deflection, shaft parts

Procedia PDF Downloads 330
1895 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 154
1894 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 146
1893 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 375
1892 Teacher-Student Relationship and Achievement in Chinese: Potential Mediating Effects of Motivation

Authors: Yuan Liu, Hongyun Liu

Abstract:

Teacher-student relationship plays an important role on facilitating students’ learning behavior, school engagement, and academic outcomes. It is believed that good relationship will enhance the human agency—the intrinsic motivation—mainly through the strengthening of autonomic support, feeling of relatedness, and the individual’s competence to increase the academic outcomes. This is in line with self-determination theory (SDT), which generally views that the intrinsic motivation imbedded with human basic needs is one of the most important factors that would lead to better school engagement, academic outcomes, and well-being. Based on SDT, the present study explored the relation of among teacher-student relationship (teacher’s encouragement, respect), students’ motivation (extrinsic and intrinsic), and achievement outcomes. The study was based on a large scale academic assessment and questionnaire survey conducted by the Center for Assessment and Improvement of Basic Education Quality in Mainland China (2013) on Grade 8 students. The results indicated that intrinsic motivation mediated the relation between teacher-student relationship and academic achievement outcomes.

Keywords: teacher-student relationship, intrinsic motivation, academic achievement, mediation

Procedia PDF Downloads 437
1891 Evidence from the Ashanti Region in Ghana: A Correlation Between Principal Instructional Leadership and School Performance in Senior High Schools

Authors: Blessing Dwumah Manu, Dawn Wallin

Abstract:

This study aims to explore school principal instructional leadership capabilities (Robinson, 2010) that support school performance in senior high schools in Ghana’s Northern Region. It explores the ways in which leaders (a) use deep leadership content knowledge to (b) solve complex school-based problems while (c) building relational trust with staff, parents, and students as they engage in the following instructional leadership dimensions: establishing goals and expectations; resourcing strategically; ensuring quality teaching; leading teacher learning and development and ensuring an orderly and safe environment (Patuawa et al, 2013). The proposed research utilizes a constructivist approach to explore the experiences of 18 school representatives (including principals, deputy principals, department heads, teachers, parents, and students) through an interview method.

Keywords: instructional leadership, leadership content knowledge, solving complex problems, building relational trust and school performance

Procedia PDF Downloads 113
1890 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 332
1889 When It Wasn’t There: Understanding the Importance of High School Sports

Authors: Karen Chad, Louise Humbert, Kenzie Friesen, Dave Sandomirsky

Abstract:

Background: The pandemic of COVID-19 presented many historical challenges to the sporting community. For organizations and individuals, sport was put on hold resulting in social, economic, physical, and mental health consequences for all involved. High school sports are seen as an effective and accessible pathway for students to receive health, social, and academic benefits. Studies examining sport cessation due to COVID-19 found substantial negative outcomes on the physical and mental well-being of participants in the high school setting. However, the pandemic afforded an opportunity to examine sport participation and the value people place upon their engagement in high school sport. Study objectives: (1) Examine the experiences of students, parents, administrators, officials, and coaches during a year without high school sports; (2) Understand why participants are involved in high school sports; and (3) Learn what supports are needed for future involvement. Methodology: A mixed method design was used, including semi-structured interviews and a survey (SurveyMonkey software), which was disseminated electronically to high school students, coaches, school administrators, parents, and officials. Results: 1222 respondents completed the survey. Findings showed: (1) 100% of students participate in high school sports to improve their mental health, with >95% said it keeps them active and healthy, helps them make friends and teaches teamwork, builds confidence and positive self-perceptions, teaches resiliency, enhances connectivity to their school, and supports academic learning; (2) Top three reasons teachers coach is their desire to make a difference in the lives of students, enjoyment, and love of the sport, and to give back. Teachers said what they enjoy most is contributing to and watching athletes develop, direct involvement with student sport success, and the competitiveatmosphere; (3) 90% of parents believe playing sports is a valuable experience for their child, 95% said it enriches student academic learning and educational experiences, and 97% encouraged their child to play school sports; (4) Officials participate because of their enjoyment and love of the sport, experience, and expertise, desire to make a difference in the lives of children, the competitive/sporting atmosphere and growing the sport. 4% of officials said it was financially motivated; (5) 100% of administrators said high school sports are important for everyone. 80% believed the pandemic will decrease teachers coaching and increase student mental health and well-being. When there was no sport, many athletes got a part-time job and tried to stay active, with limited success. Coaches, officials, and parents spent more time with family. All participants did little physical activity, were bored; and struggled with mental health and poor physical health. Respondents recommended better communication, promotion, and branding of high school sport benefits, equitable funding for all sports, athlete development, compensation and recognition for coaching, and simple processes to strengthen the high school sport model. Conclusions: High school sport is an effective vehicle for athletes, parents, coaches, administrators, and officials to derive many positive outcomes. When it is taken away, serious consequences prevail. Paying attention to important success factors will be important for the effectiveness of high school sports.

Keywords: physical activity, high school, sports, pandemic

Procedia PDF Downloads 153
1888 The Role of Quality Management Tools and Knowledge Sharing in Improving the Level of Academic Staff: An Empirical Investigation of the Jordanian Universities

Authors: Tasneem Alfalah, Salsabeel Alfalah, Jannat Alfalah

Abstract:

The quality of higher education as a service is fundamental to a country’s development because universities prepare the professionals who will work as managers in companies and manage public and private resources and care for the health and education of new generations. Knowledge sharing involves the interaction of all activities between individuals. Thus, the higher education institutions are aiming to improve and assist their academics in generating new ideas by encouraging them to work as a team, to simplify the exchange of the new knowledge and to further improve the learning process and achieving institutional aims. Moreover, the sources of competitive advantage in universities derive from intellectual capital and innovations in which innovation comes through knowledge sharing. Using quality tools is to define the exact requirements needed to create the concept of knowledge sharing and what are the barriers to achieve this in universities. The purpose of this research is critically evaluating the role of using quality tools to facilitate the concept of knowledge sharing and improve the academic staff level in the Jordanian universities.

Keywords: higher education, knowledge sharing, quality, management tools

Procedia PDF Downloads 466
1887 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 142
1886 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved virtual reality content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or “Foundation English” course, which is mandatory for all first-year and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and should therefore continue being an integral part of the mandatory English course curriculum at HJU University.

Keywords: virtual reality, smartphone, English learning, curriculum

Procedia PDF Downloads 68
1885 Using Automated Agents to Facilitate Instructions in a Large Online Course

Authors: David M Gilstrap

Abstract:

In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants.

Keywords: agents, Brightspace, large enrollment, learning management system, repetition of instructions

Procedia PDF Downloads 206
1884 Expansive-Restrictive Style: Conceptualizing Knowledge Workers

Authors: Ram Manohar Singh, Meenakshi Gupta

Abstract:

Various terms such as ‘learning style’, ‘cognitive style’, ‘conceptual style’, ‘thinking style’, ‘intellectual style’ are used in literature to refer to an individual’s characteristic and consistent approach to organizing and processing information. However, style concepts are criticized for mutually overlapping definitions and confusing classification. This confusion should be addressed at the conceptual as well as empirical level. This paper is an attempt to bridge this gap in literature by proposing a new concept: expansive-restrictive intellectual style based on phenomenological analysis of an auto-ethnography and interview of 26 information technology (IT) professionals working in knowledge intensive organizations (KIOs) in India. Expansive style is an individual’s preference to expand his/her horizon of knowledge and understanding by gaining real meaning and structure of his/her work. On the contrary restrictive style is characterized by an individual’s preference to take minimalist approach at work reflected in executing a job efficiently without an attempt to understand the real meaning and structure of the work. The analysis suggests that expansive-restrictive style has three dimensions: (1) field dependence-independence (2) cognitive involvement and (3) epistemological beliefs.

Keywords: expansive, knowledge workers, restrictive, style

Procedia PDF Downloads 429
1883 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics

Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi

Abstract:

Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.

Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3

Procedia PDF Downloads 153
1882 A Study of Primary School Parents’ Interaction with Teachers’ in Malaysia

Authors: Shireen Simon

Abstract:

This study explores the interactions between primary school parents-teachers in Malaysia. Schools in the country are organized to promote participation between parents and teachers. Exchanges of dialogue are most valued between parents and teachers because teachers are in daily contact with pupils’ and the first line of communication with parents. Teachers are considered by parents as the most important connection to improve children learning and well-being. Without a good communication, interaction or involvement between parent-teacher might tarnish a pupils’ performance in school. This study tries to find out multiple emotions among primary school parents-teachers, either estranged or cordial, when they communicate in a multi-cultured society in Malaysia. Important issues related to parent-teacher interactions are discussed further. Parents’ involvement in an effort to boost better education in school is significantly more effective with parents’ involvement. Lastly, this article proposes some suggestions for parents and teachers to build a positive relationship with effective communication and establish more democratic open door policy.

Keywords: multi-cultured society, parental involvement, parent-teacher relationships, parents’ interaction

Procedia PDF Downloads 253