Search results for: anti fungal power
2946 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX
Procedia PDF Downloads 5002945 Relatively High Heart-Rate Variability Predicts Greater Survival Chances in Patients with Covid-19
Authors: Yori Gidron, Maartje Mol, Norbert Foudraine, Frits Van Osch, Joop Van Den Bergh, Moshe Farchi, Maud Straus
Abstract:
Background: The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV2), which began in 2019, also known as Covid-19, has infected over 136 million people and tragically took the lives of over 2.9 million people worldwide. Many of the complications and deaths are predicted by the inflammatory “cytokine storm.” One way to progress in the prevention of death is by finding a predictive and protective factor that inhibits inflammation, on the one hand, and which also increases anti-viral immunity on the other hand. The vagal nerve does precisely both actions. This study examined whether vagal nerve activity, indexed by heart-rate variability (HRV), predicts survival in patients with Covid-19. Method: We performed a pseudo-prospective study, where we retroactively obtained ECGs of 271 Covid-19 patients arriving at a large regional hospital in The Netherlands. HRV was indexed by the standard deviation of the intervals between normal heartbeats (SDNN). We examined patients’ survival at 3 weeks and took into account multiple confounders and known prognostic factors (e.g., age, heart disease, diabetes, hypertension). Results: Patients’ mean age was 68 (range: 25-95) and nearly 22% of the patients had died by 3 weeks. Their mean SDNN (17.47msec) was far below the norm (50msec). Importantly, relatively higher HRV significantly predicted a higher chance of survival, after statistically controlling for patients’ age, cardiac diseases, hypertension and diabetes (relative risk, H.R, and 95% confidence interval (95%CI): H.R = 0.49, 95%CI: 0.26 – 0.95, p < 0.05). However, since HRV declines rapidly with age and since age is a profound predictor in Covid-19, we split the sample by median age (40). Subsequently, we found that higher HRV significantly predicted greater survival in patients older than 70 (H.R = 0.35, 95%CI: 0.16 – 0.78, p = 0.01), but HRV did not predict survival in patients below age 70 years (H.R = 1.11, 95%CI: 0.37 – 3.28, p > 0.05). Conclusions: To the best of our knowledge, this is the first study showing that higher vagal nerve activity, as indexed by HRV, is an independent predictor of higher chances for survival in Covid-19. The results are in line with the protective role of the vagal nerve in diseases and extend this to a severe infectious illness. Studies should replicate these findings and then test in controlled trials whether activating the vagus nerve may prevent mortality in Covid-19.Keywords: Covid-19, heart-rate Variability, prognosis, survival, vagal nerve
Procedia PDF Downloads 1752944 Study on the Forging of AISI 1015 Spiral Bevel Gear by Finite Element Analysis
Authors: T. S. Yang, J. H. Liang
Abstract:
This study applies the finite element method (FEM) to predict maximum forging load, effective stress distribution, effective strain distribution, workpiece temperature temperature in spiral bevel gear forging of AISI 1015. Maximum forging load, effective stress, effective strain, workpiece temperature are determined for different process parameters, such as modules, number of teeth, helical angle and workpiece temperature of the spiral bevel gear hot forging, using the FEM. Finally, the prediction of the power requirement for the spiral bevel gear hot forging of AISI 1015 is determined.Keywords: spiral bevel gear, hot forging, finite element method
Procedia PDF Downloads 4782943 Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree
Authors: M. A. Siti Faridah, K. Muhammad, H. M. Ghazali, Y. A. Yusof
Abstract:
This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees.Keywords: amaranth, antioxidant, chlorophyll derivative, enzymatic liquefaction
Procedia PDF Downloads 1462942 Numerical Study of Homogeneous Nanodroplet Growth
Authors: S. B. Q. Tran
Abstract:
Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth
Procedia PDF Downloads 2732941 Preparation and Characterization of Electrospun CdTe Quantum Dots / Nylon-6 Nanofiber Mat
Authors: Negar Mesgara, Laleh Maleknia
Abstract:
In this paper, electrospun CdTe quantum dot / nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by FE-SEM, XRD and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The phenomenon of ‘on ‘ and ‘off ‘ luminescence intermittency (blinking) of CdTe QDs in nylon-6 was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The ‘off’ times, the interval between adjacent ‘on’ states, remained essentially unaffected with an increase in excitation intensity. In the case of ‘on’ time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs.Keywords: electrospinning, CdTe quantum dots, Nylon-6, Nanocomposite
Procedia PDF Downloads 4342940 Pyroelectric Effect on Thermoelectricity of AlInN/GaN Heterostructures
Authors: B. K. Sahoo
Abstract:
Superior thermoelectric (TE) efficiency of AlₓIn₁₋ₓN /GaN heterostructure (HS) requires a minimum value of thermal conductivity (k). A smaller k would lead to even further increase of TE figure of merit (ZT). The built-in polarization (BIP) electric field of AlₓIn₁₋ₓN /GaN HS enhances S, and σ of the HS, however, the effect of BIP field on k of the HS has not been explored. Study of thermal conductivities (k: without BIP and kp: including BIP) vs temperature predicts pyroelectric behavior of HS. Both k and kp show crossover at a temperature Tp. The result shows that below Tp, kp < k due to negative thermal expansion coefficient (TEC). However, above Tp, kp > k. Above Tp, piezoelectric polarization dominates over spontaneous polarization due to positive TEC. This generates more lattice mismatch resulting in the significant contribution of BIP field to thermal conductivity. Thus, Tp can be considered as primary pyroelectric transition temperature of the material as above Tp thermal expansion takes place which is the reason for the secondary pyroelectric effect. It is found that below Tp, kp is decreased; thus enhancing TE efficiency. For x=0.1, 0.2 and 0.3; Tp are close to 200, 210 and 260 K, respectively. Thus, k of the HS can be modified as per requirement by tailoring the Al composition; making it suitable simultaneously for the design of high-temperature pyroelectric sensors and TE module for maximum power production.Keywords: AlₓIn₁₋ₓN/GaN heterostructure, built in polarization, pyroelectric behavior, thermoelectric efficiency
Procedia PDF Downloads 1212939 Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation
Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski
Abstract:
This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%.Keywords: depolymerisation, pre-treatment, biomass, fermentation
Procedia PDF Downloads 5182938 Utilizing Hybrid File Mapping for High-Performance I/O
Authors: Jaechun No
Abstract:
As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation
Procedia PDF Downloads 5062937 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies
Authors: François Vallée, Jean-François Toubeau, Zacharie De Grève, Jacques Lobry
Abstract:
When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non-covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.Keywords: expected energy not served, loss of load expectation, Monte Carlo simulation, reliability, wind generation
Procedia PDF Downloads 4102936 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity
Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien
Abstract:
This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.Keywords: CFD, experimental, mathematical models, parabolic trough, radiation
Procedia PDF Downloads 4232935 Concept of Tourist Village on Kampung Karaton of Karaton Kasunanan Surakarta, Central Java, Indonesia
Authors: Naniek Widayati Priyomarsono
Abstract:
Introduction: In beginning of Karaton formation, namely, era of Javanese kingdom town had the power region outside castle town (called as Mancanegara), settlement of karaton can function as “the space-between” and “space-defense”, besides it was one of components from governmental structure and karaton power at that time (internal servant/abdi dalem and sentana dalem). Upon the Independence of Indonesia in 1945 “Kingdom-City” converted its political status into part of democratic town managed by statutes based on the classification. The latter affects local culture hierarchy alteration due to the physical development and events. Dynamics of social economy activities in Kampung Karaton surrounded by buildings of Complex of Karaton Kasunanan ini, have impact on the urban system disturbed into the región. Also cultural region image fades away with the weak visual access from existant cultural artefacts. That development lacks of giving appreciation to the established region image providing identity of Karaton Kasunanan particularly and identity of Surakarta city in general. Method used is strategy of grounded theory research (research providing strong base of a theory). Research is focused on actors active and passive relevantly getting involved in change process of Karaton settlement. Data accumulated is “Investigation Focus” oriented on actors affecting that change either internal or external. Investigation results are coupled with field observation data, documentation, literature study, thus it takes accurate findings. Findings: Karaton village has potential products as attraction, possessing human resource support, strong motivation from society still living in that settlement, possessing facilities and means supports, tourism event-supporting facilities, cultural art institution, available fields or development area. Data analyzed: To get the expected result it takes restoration in social cultural development direction, and economy, with ways of: Doing social cultural development strategy, economy, and politics. To-do steps are program socialization of Karaton village as Tourism Village, economical development of local society, regeneration pattern, filtering, and selection of tourism development, integrated planning system development, development with persuasive approach, regulation, market mechanism, social cultural event sector development, political development for region activity sector. Summary: In case the restoration is done by getting society involved as subject of that settlement (active participation in the field), managed and packed interestingly and naturally with tourism-supporting facilities development, village of Karaton Kasunanan Surakarta is ready to receive visit of domestic and foreign tourists.Keywords: karaton village, finding, restoration, economy, Indonesia
Procedia PDF Downloads 4402934 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 612933 Development and Modeling of a Geographic Information System Solar Flux in Adrar, Algeria
Authors: D. Benatiallah, A. Benatiallah, K. Bouchouicha, A. Harouz
Abstract:
The development and operation of renewable energy known an important development in the world with significant growth potential. Estimate the solar radiation on terrestrial geographic locality is of extreme importance, firstly to choose the appropriate site where to place solar systems (solar power plants for electricity generation, for example) and also for the design and performance analysis of any system using solar energy. In addition, solar radiation measurements are limited to a few areas only in Algeria. Thus, we use theoretical approaches to assess the solar radiation on a given location. The Adrar region is one of the most favorable sites for solar energy use with a medium flow that exceeds 7 kWh / m2 / d and saddle of over 3500 hours per year. Our goal in this work focuses on the creation of a data bank for the given data in the energy field of the Adrar region for the period of the year and the month then the integration of these data into a geographic Information System (GIS) to estimate the solar flux on a location on the map.Keywords: Adrar, flow, GIS, deposit potential
Procedia PDF Downloads 3742932 Hybridization and Dynamic Performance Analysis of Three-Wheeler Electric Auto Rickshaw
Authors: Muhammad Asghar, A. I. Bhatti, T. Izhar
Abstract:
The three-wheeled auto-rickshaw with a two or four-stroke Gasoline, Liquid Petrolium Gas (LPG) or Compressed Natural Gas (CNG) engine is a petite, highly maneuverable vehicle and best suited for the small and heavily-congested roads and is an affordable means of transportation in Pakistan cities. However due to in-efficient engine design, it is a main cause of air-pollution in the shape of white smoke (CO2) (greenhouse gases) at the tail pipe. Due to the environmental pollution, a huge number of battery powered vehicles have been imported from all over the world to fulfill the need of country. Effect of degree of hybridization on fuel economy and acceleration performance has been discussed in this paper. From mild to full hybridization stages have been examined. Optimal level of hybridization ranges depending on the total driving power of vehicle are suggested. The degree of hybridization is varied and fuel economy is seen accordingly by using Advisor (NREL) software. The novel vehicle drive-train is modeled and simulated in the Advisor software.Keywords: advisor, hybridization, fuel economy, Three-Wheeled Rickshaw
Procedia PDF Downloads 5672931 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System
Authors: I. A. Farhat
Abstract:
The dynamic economic dispatch (DED) problem is one of the complex, constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand. Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.Keywords: artificial immune system, dynamic economic dispatch, optimal economic operation, large-scale problem
Procedia PDF Downloads 2362930 Quasi-Federal Structure of India: Fault-Lines Exposed in COVID-19 Pandemic
Authors: Shatakshi Garg
Abstract:
As the world continues to grapple with the COVID-19 pandemic, India, one of the most populous democratic federal developing nation, continues to report the highest active cases and deaths, as well as struggle to let its health infrastructure not succumb to the exponentially growing requirements of hospital beds, ventilators, oxygen to save thousands of lives daily at risk. In this context, the paper outlines the handling of the COVID-19 pandemic since it first hit India in January 2020 – the policy decisions taken by the Union and the State governments from the larger perspective of its federal structure. The Constitution of India adopted in 1950 enshrined the federal relations between the Union and the State governments by way of the constitutional division of revenue-raising and expenditure responsibilities. By way of the 72nd and 73rd Amendments in the Constitution, powers and functions were devolved further to the third tier, namely the local governments, with the intention of further strengthening the federal structure of the country. However, with time, several constitutional amendments have shifted the scales in favour of the union government. The paper briefly traces some of these major amendments as well as some policy decisions which made the federal relations asymmetrical. As a result, data on key fiscal parameters helps establish how the union government gained upper hand at the expense of weak state governments, reducing the local governments to mere constitutional bodies without adequate funds and fiscal autonomy to carry out the assigned functions. This quasi-federal structure of India with the union government amassing the majority of power in terms of ‘funds, functions and functionaries’ exposed the perils of weakening sub-national governments post COVID-19 pandemic. With a complex quasi-federal structure and a heterogeneous population of over 1.3 billion, the announcement of a sudden nationwide lockdown by the union government was followed by a plight of migrants struggling to reach homes safely in the absence of adequate arrangements for travel and safety-net made by the union government. With limited autonomy enjoyed by the states, they were mostly dictated by the union government on most aspects of handling the pandemic, including protocols for lockdown, re-opening post lockdown, and vaccination drive. The paper suggests that certain policy decisions like demonetization, the introduction of GST, etc., taken by the incumbent government since 2014 when they first came to power, have further weakened the states and local governments, which have amounted to catastrophic losses, both economic and human. The role of the executive, legislature and judiciary are explored to establish how all these three arms of the government have worked simultaneously to further weaken and expose the fault-lines of the federal structure of India, which has lent the nation incapacitated to handle this pandemic. The paper then suggests the urgency of re-looking at the federal structure of the country and undertaking measures that strengthen the sub-national governments and restore the federal spirit as was enshrined in the constitution to avoid mammoth human and economic losses from a pandemic of this sort.Keywords: COVID-19 pandemic, India, federal structure, economic losses
Procedia PDF Downloads 1792929 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization
Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo
Abstract:
Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy
Procedia PDF Downloads 1472928 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects
Procedia PDF Downloads 3162927 Unified Theory of the Security Dilemma: Geography, MAD and Democracy
Authors: Arash Heydarian Pashakhanlou
Abstract:
The security dilemma is one of the key concepts in International Relations (IR), and the numerous engagements with it have created a great deal of confusion regarding its essence. That is why this article seeks to dissect the security dilemma and rebuild it from its foundational core. In doing so, the present study highlights that the security dilemma requires interaction among actors that seek to protect themselves from other's capacity for harm under the condition of uncertainty to operate. In this constellation, actors are confronted with the dilemma of motives, power, and action, which they seek to resolve by acquiring information regarding their opponents. The relationship between the parties is shaped by the harm-uncertainty index (HUI) consisting of geographical distance, MAD, and joint democracy that determines the intensity of the security dilemma. These elements define the unified theory of the security dilemma (UTSD) developed here. UTSD challenges the prevailing view that the security dilemma is a unidimensional paradoxical concept, regulated by the offense-defense balance and differentiation that only occurs in anarchic settings with tragic outcomes and is equivalent to the spiral model.Keywords: security dilemma, revisionism, status quo, anarchy, uncertainty, tragedy, spiral, deterrence
Procedia PDF Downloads 2382926 Effects of Repetitive Strain/Stress Injury on the Human Body
Authors: Mohd Abdullah
Abstract:
This review describes some of the effects of repetitive strain/stress injury (RSI) on the human body especially among computer professionals today that spend extended hours of prolonged sitting in front of a computer day in and day out. The review briefly introduces the main factors that contribute to an increase of RSI among such computer professionals. The review briefly discusses how the human spinal column and knees are mainly affected by the onset of RSI resulting in poor posture. The root and secondary causes and effects of RSI are reviewed. The importance and value of the various breathing techniques are reviewed in an attempt to alleviate some of the effects of RSI. The review concludes with a small sample of suggested office stretches and poses geared towards at reducing RSI follows in this review. Readers will learn about the effects of RSI, as well as ways to cope with it. A better understanding of coping strategies may lead to well-being and a healthier overall lifestyle. Ultimately, the investment of time to connect with oneself with the poses and the power of the breath would promote a well-being that is overall healthier thus resulting in a better ability to cope/manage life stresses.Keywords: health, wellness, repetitive, chairs
Procedia PDF Downloads 1052925 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene
Authors: Yingqian Chen, Sergei Manzhos
Abstract:
Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes
Procedia PDF Downloads 6402924 Leadership's Controlling via Complexity Investigation in Crisis Scenarios
Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek
Abstract:
In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.Keywords: leadership, controlling, complexity, DYVELOP, scenarios
Procedia PDF Downloads 4042923 From Modern to Contemporary Art: Transformations of Art Market in Istanbul
Authors: Cem Ozatalay, Senem Ornek
Abstract:
The Artprice Contemporary Art Market Annual Report 2014 notices that Istanbul, with its art market volume of $3.6 million has become the first city of the Middle East and North Africa region and the 14th city of the World. Indeed, the period 2004–2014 has been significant in terms of the growth of the art market, during which the majority of contemporary art galleries and museums in Istanbul was inaugurated. This boom means that with the joining of new agents, the structure of the art market has dramatically changed. To use Nathalie Heinich’s terminology, in the current art field, three art genres – namely classical art, modern art and contemporary art – coexist, but in the case of Istanbul, such as many art cities in the world, the latter genre has become increasingly dominant. This presentation aims to show how the power shifts away from the classical art agents to contemporary art agents, and the effects produced by the conflicts between the old and new agents of current art field. Based on the data obtained from an ongoing field research in Istanbul among the art market agents such as art dealers, curators, art critics and artists, it will be shown that even if the agents of different art genres are in conflict with each other, there is, at the same time, a continuum between the three art worlds.Keywords: contemporary art market, economic sociology of art, Istanbul art market, structure of the art field in Istanbul
Procedia PDF Downloads 2552922 Digital and Social Media as Tools for Legitimising Conflict: A Study of the Niger Delta Avengers
Authors: Shola Abidemi Olabode
Abstract:
Nigeria as a country has been plagued by numerous conflicts since the British colonialists gave in to the advocacy of Nigerian dissents for independence and relinquished power in 1960. These conflicts are often motivated by different issues, from socio-political and economic issues to struggles of ethnic and religious orientation. The Niger Delta region which accounts for the country’s economic mainstay has been at the epicentre of such conflicts. Over the years, peaceful protests, and radical insurgency and resistance movements too numerous to mention have emerged in the region. The Niger Delta Avengers is an example of a recent conflict movement in the region. Using a case study approach, and looking through a cyberconflict perspective, this paper offers a discussion on the intersection between digital and social media and framing in the Niger Delta Avengers conflict. It advocates that the Niger Delta Avengers use digital and social media to legitimise and give credence to their struggle.Keywords: digital and social media, framing, Niger delta avengers, cyberconflict, conflict
Procedia PDF Downloads 2782921 Cold Spray Coating and Its Application for High Temperature
Authors: T. S. Sidhu
Abstract:
Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials
Procedia PDF Downloads 2432920 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors
Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi
Abstract:
The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor
Procedia PDF Downloads 6282919 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V
Authors: Javed Iqbal
Abstract:
The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells
Procedia PDF Downloads 2412918 Competition in Kenya: The Legal and Institutional Framework and an Appraisal of Key Market Players
Authors: Edwin Njoroge Kimani, Alan M. Munyao
Abstract:
Despite Kenya’s status as a regional economic powerhouse, it struggles with economic shocks that expose the consumers. This, however, seems not to affect major cooperates such as those in the telecommunication and energy sectors. Through their operations, they have not only been able to fluctuate prices at will but also they have been accused of curtailing their rivals from penetrating the market. This study, through literature review of the legal and institutional framework, reports and publications interrogates the law and uncovers the following; i) failings of the legal framework to define market dominance and abuse of such positions, ii) the participation of the state, iii) the inertia of the government to prosecute corporations that abuse their market dominance, iv) the role of the state as a market player and as a regulator through the Competition Authority of Kenya. This study concludes that the market distortion is as a result of weak legal and institutional framework as well as conflict of interest by the government. Not much has been researched in the field of competition law the greater East Africa. This research is intended to form part of the growing research in the field and inform legal reform.Keywords: competition law, economic power, dominance, Kenya
Procedia PDF Downloads 2282917 Unique NiO Based 1 D Core/Shell Nano-Heterostructure Electrodes for High-Performance Supercapacitor
Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar
Abstract:
Unique one-dimensional (1D) Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures are fabricated by combining the electrochemical deposition and annealing. The high-performance pseudo-capacitor electrode based on the Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and demonstrated. The Co-Ni/Co3O4-NiO core/shell nano-heterostructures exhibit high specific capacitance (2013 Fg-1 at 2.5 Ag-1), high energy and power density (23 Wh kg-1 and 5.5 kW kg-1, at the discharge current density of 20.8 A g-1.), good capacitance retention, and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the novel nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport.Keywords: nano-heterostructures, energy storage, supercapacitors, electrochemical deposition
Procedia PDF Downloads 326