Search results for: heat and mass transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7721

Search results for: heat and mass transfer

2051 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 217
2050 Involvement of Stakeholders in the R&D and Innovation Process in Developing Country Context: An Analysis of the Nigeria Innovation System

Authors: B. O. Oyedoyin, M. O. Ilori, T. O. Oyebisi, B. A. Oluwale, O. O. Jegede

Abstract:

The study was designed to evaluate the business development and transfer of technologies to small manufacturing companies by research institutes in South Western Nigeria. The study covered all the industrial research institutions with headquarters in South Western Nigeria. The study showed that the involvement of scientists in innovation process was rated highest in the idea generation (4.14) and idea screening (4.29) phases; high in R&D (3.86) and fairly high in pilot plant development (2.71) and commercialization (2.43) phase. Their involvement was rated low in business analysis and development (2.14), and test marketing (2.29) phase. The involvement of engineers was rated highest in idea generation (3.28), fairly high in R&D (2.71), pilot plant development (2.57), and idea screening (2.40) phases. However, their involvement was rated low in business analysis and development (2.0), test marketing (2.0), and commercialization (1.28) phases. The involvement of technology marketers in innovation process was generally rated fairly high in R&D (2.7) and business analysis and development (2.6), and low in all the other phases of innovation. However, their involvement at IAR&T, FIIRO, and NIOMR in all the phases was rated very high (3.0-5.0). The involvement of entrepreneurs was generally rated from fairly high to low (2.7-2.3) in all the phases of innovation. The involvement of financial institutions in all the phases of innovation was generally rated low (1.28-1.71). In conclusion, the study showed that the involvement of stakeholders like entrepreneurs and financial institutions in technology packaging for commercialization is very low.

Keywords: research institutes, national innovation system, Nigeria, entrepreneurs, financial institution

Procedia PDF Downloads 419
2049 Shooting Gas Cylinders to Prevent Their Explosion in Fire

Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski

Abstract:

Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.

Keywords: fire, gas cylinders, neutralization, shooting

Procedia PDF Downloads 256
2048 Process Parameter Study on Friction Push Plug Welding of AA6061 Alloy

Authors: H. Li, W. Qin, Ben Ye

Abstract:

Friction Push Plug Welding (FPPW) is a solid phase welding suitable for repairing defective welds and filling self-reacting weld keyholes in Friction Stir Welds. In FPPW process, a tapered shaped plug is rotated at high speed and forced into a tapered hole in the substrate. The plug and substrate metal is softened by the increasing temperature generated by friction and material plastic deformation. This paper aims to investigate the effect of process parameters on the quality of the weld. Orthogonal design methods were employed to reduce the amount of experiment. Three values were selected for each process parameter, rotation speed (1500r/min, 2000r/min, 2500r/min), plunge depth (2mm, 3mm, 4mm) and plunge speed (60mm/min, 90mm/min, 120r/min). AA6061aluminum alloy plug and substrate plate was used in the experiment. In a trial test with the plunge depth of 1mm, a noticeable defect appeared due to the short plunge time and insufficient temperature. From the recorded temperature profiles, it was found that the peak temperature increased with the increase of the rotation speed, plunge speed and plunge depth. In the initial stage, the plunge speed was the main factor affecting heat generation, while in the steady state welding stage, the rotation speed played a more important role. The FPPW weld defect includes flash and incomplete penetration in the upper, middle and bottom interface with the substrate. To obtain defect free weld, the higher rotation speed and proper plunge depth were recommended.

Keywords: friction push plug welding, process parameter, weld defect, orthogonal design

Procedia PDF Downloads 141
2047 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 497
2046 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 344
2045 Housing Delivery in Nigeria: Repackaging for Sustainable Development

Authors: Funmilayo L. Amao, Amos O. Amao

Abstract:

It has been observed that majority of the people are living in poor housing quality or totally homeless in urban center despite all governmental policies to provide housing to the public. On the supply side, various government policies in the past have been formulated towards overcoming the huge shortage through several Housing Reform Programmes. Despite these past efforts, housing continues to be a mirage to ordinary Nigerian. Currently, there are various mass housing delivery programmes such as the affordable housing scheme that utilize the Public Private Partnership effort and several Private Finance Initiative models could only provide for about 3% of the required stock. This suggests the need for a holistic solution in approaching the problem. The aim of this research is to find out the problems hindering the delivery of housing in Nigeria and its effects on housing affordability. The specific objectives are to identify the causes of housing delivery problems, to examine different housing policies over years and to suggest a way out for sustainable housing delivery. This paper also reviews the past and current housing delivery programmes in Nigeria and analyses the demand and supply side issues. It identifies the various housing delivery mechanisms in current practice. The objective of this paper, therefore, is to give you an insight into the delivery option for the sustainability of housing in Nigeria, given the existing delivery structures and the framework specified in the New National Housing Policy. The secondary data were obtained from books, journals and seminar papers. The conclusion is that we cannot copy models from other nations, but should rather evolve workable models based on our socio-cultural background to address the huge housing shortage in Nigeria. Recommendations are made in this regard.

Keywords: housing, sustainability, housing delivery, housing policy, housing affordability

Procedia PDF Downloads 287
2044 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture

Authors: K. Ravi, Sabu Subhash

Abstract:

Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.

Keywords: bentonite, deep geological repository, thermal history, undrained shear strength

Procedia PDF Downloads 340
2043 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys

Authors: Muna Khushaim

Abstract:

Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.

Keywords: aluminum alloy, atom probe tomography, early stage, decomposition

Procedia PDF Downloads 334
2042 The Impact of a Cognitive Acceleration Program on Prospective Teachers' Reasoning Skills

Authors: Bernardita Tornero

Abstract:

Cognitive Acceleration in Mathematics Education (CAME) programmes have been used successfully for promoting the development of thinking skills in school students for the last 30 years. Given that the approach has had a tremendous impact on the thinking capabilities of participating students, this study explored the experience of using the programme with prospective primary teachers in Chile. Therefore, this study not only looked at the experience of prospective primary teachers during the CAME course as learners, but also examined how they perceived the approach from their perspective as future teachers, as well as how they could transfer the teaching strategies they observed to their future classrooms. Given the complexity of the phenomenon under study, this research used a mixed methods approach. For this reason, the impact that the CAME course had on prospective teachers’ thinking skills was not only approached by using a test that assessed the participants’ improvements in these skills, but their learning and teaching experiences were also recorded through qualitative research tools (learning journals, interviews and field notes). The main findings indicate that, at the end of the CAME course, prospective teachers not only demonstrated higher thinking levels, but also showed positive attitudinal changes towards teaching and learning in general, and towards mathematics in particular. The participants also had increased confidence in their ability to teach mathematics and to promote thinking skills in their students. In terms of the CAME methodology, prospective teachers not only found it novel and motivating, but also commented that dealing with the thinking skills topic during a university course was both unusual and very important for their professional development. This study also showed that, at the end of the CAME course, prospective teachers felt they had developed strategies that could be used in their classrooms in the future. In this context, the relevance of the study is not only that it described the impact and the positive results of the first experience of using a CAME approach with prospective teachers, but also that some of the conclusions have significant implications for the teaching of thinking skills and the training of primary school teachers.

Keywords: cognitive acceleration, formal reasoning, prospective teachers, initial teacher training

Procedia PDF Downloads 400
2041 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs

Procedia PDF Downloads 86
2040 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture

Authors: Kai-Wei Huang, Yi-Feng Lin

Abstract:

The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.

Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane

Procedia PDF Downloads 344
2039 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 251
2038 Earthquake Hazards in Manipur: Casual Factors and Remedial Measures

Authors: Kangujam Monika, Kiranbala Devi Thokchom, Soibam Sandhyarani Devi

Abstract:

Earthquake is a major natural hazard in India. Manipur, located in the North-Eastern Region of India, is one of the most affected location in the region prone to earthquakes since it lies in an area where Indian and Eurasian tectonic plates meet and is in seismic Zone V which is the most severe intensity zone, according to IS Code. Some recent earthquakes recorded in Manipur are M 6.7 epicenter at Tamenglong (January 4, 2016), M 5.2 epicenter at Churachandpur (February 24, 2017) and most recent M 4.4 epicenter at Thoubal (June 19, 2017). In these recent earthquakes, some houses and buildings were damaged, landslides were also occurred. A field study was carried out. An overview of the various causal factors involved in triggering of earthquake in Manipur has been discussed. It is found that improper planning, poor design, negligence, structural irregularities, poor quality materials, construction of foundation without proper site soil investigation and non-implementation of remedial measures, etc., are possibly the main causal factors for damage in Manipur during earthquake. The study also suggests, though the proper design of structure and foundation along with soil investigation, ground improvement methods, use of modern techniques of construction, counseling with engineer, mass awareness, etc., might be effective solution to control the hazard in many locations. An overview on the analysis pertaining to earthquake in Manipur together with on-going detailed site specific geotechnical investigation were presented.

Keywords: Manipur, earthquake, hazard, structure, soil

Procedia PDF Downloads 204
2037 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 187
2036 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 172
2035 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 139
2034 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon

Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.

Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon

Procedia PDF Downloads 229
2033 Effects of Continuous Training on Anthropometric Characteristics of Adolescents in Kano, Nigeria

Authors: Emmanuel S. Adeyanju

Abstract:

This study assessed the effects of continuous training on anthropometric characteristics of adolescents in Kano, Nigeria. The anthropometric measures of per cent body fat (%BF), body mass index (BMI), conicity index (CI) and waist-to-hip ratio (WHR) were selected because of their roles in increased adiposity and favourable cardiovascular disease (CVD) factor profiles in children and adolescence. The international standards and procedures were followed in all the measurements. A total of thirty (30) subjects (M=15; F=15), selected at random, were divided into two groups; one training (M=10; F=10) and the other control (M=5; F=5). Both groups were tested before training, at six (6) and 12 weeks in all the listed variables. The training group had 12 weeks continuous training which involved running round the standard 400 m track of the college following standard procedures; while the control group did not. The findings revealed significant sex-specific reductions in %BF (F=610.482 ˂ 0.05), BMI (F=73.860 ˂ 0.05), WHR (F=49.756 ˂ 0.05); however, no significant training effect on CI (F=1.855 ˃ 0.05) and WHR (F=1.956 ˃ 0.05) was found. Greater modifications found in females than in males (except in CI and WHR) due to training were probably related to their initial level of fitness and enzymatic modifications at subcellular level during training. The result also revealed significant relationship between the modifications in %BF, BMI and WHR but failed to establish any between CI and other adiposity measures. Thus, to avert the consequences of obesity and overweight, the declining fitness level of adolescents should be checked by ensuring they engaged in regular moderate-to-vigorous physical activity (MVPA) programmes. Such a childhood habit of exercise developed early in life will have a carry-over value into adult life and improve the quality of adult population.

Keywords: adiposity, anthropometry, conicity, continuous training

Procedia PDF Downloads 449
2032 Disseminated Tuberculosis: Experience from Tuberculosis Directly Observed Treatment Short Course Center at a Tertiary Care Teaching Hospital in the Philippines

Authors: Jamie R. Chua, Christina Irene D. Mejia, Regina P. Berba

Abstract:

Disseminated tuberculosis is an infectious disease caused by Mycobacterium tuberculosis involving two or more non-contiguous sites identified through bacteriologic confirmation or clinical diagnosis. Over the five year period included in the study, the UP-PGH TB DOTS clinic had total of 3,967 referrals, and the prevalence of disseminated tuberculosis is 1% (68/3967). The mean age was 33.9 years (range 19-64 years) with a male: female ratio of 1:1. 67% (52 patients) had no predisposing comorbid illness or immune disorder. The most common presenting symptoms were abdominal pain (19%), back pain (13%), abdominal enlargement (11%) and mass (10.2%). Anemia, leukocytosis, hypoalbuminemia, and high-normal serum calcium were common biochemical and hematologic findings. Around 36% (25) of patients were diagnosed clinically with disseminated tuberculosis despite lacking bacteriologic evidence of multi-organ involvement. The lungs (86%) is still the most commonly involved site, followed by intestinal (22%), vertebral/Pott’s (27%), and pelvic/genital (19%). The mean time from presentation to initiation of therapy was 22 days (SD 32.7). Only 18 patients (29.3%) were properly recorded to have been referred to local TB DOTs facilities. Of the 68 patients, only 16% (11 patients) continued follow-up at PGH, and all had documented treatment completion. Treatment outcomes of the remaining were unknown. Due to the variety of involved sites, a high index of suspicion is required. Knowledge on clinical features, common radiographic findings, and histopathologic characteristics of disseminated TB is important as bacteriologic evidence of infection is not always apparent.

Keywords: disseminated tuberculosis, Mycobacterium tuberculosis, miliary tuberculosis, tuberculosis

Procedia PDF Downloads 230
2031 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 153
2030 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 220
2029 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 168
2028 Comparative Assessment of hCG with Estrogen in Increasing Pregnancy Rate in Mixed Parity Buffaloes

Authors: Sanan Raza, Tariq Abbas, Ahmad Yar Qamar, Muhammad Younus, Hamayun Khan, Mujahid Zafar

Abstract:

Water Buffaloes contribute significantly in Asian agriculture. The objective of this study was to evaluate the efficacy of two synchronization protocols in enhancing pregnancy rate in 105 mixed parity buffaloes particularly in summer season. Buffaloes are seasonal breeders showing more fertility from October to January in subtropical environment of Pakistan. In current study 105 lactating buffaloes of mixed parity were used having normal estrous cycle, age ranging 5-9 years, weighing between 400-650 kg, BCS 4 ± 0.5 (1-5) and lactation varied from first to 5th. Experimental animals were divided into three groups based on corpus leteummorphometry. Morphometry of C.L was done using rectal population and ultrasonography. All animals were injected 25mg of PGi.m. (Cloprostenol). In Group-1 (n=35) hCG was administered at follicular size of 10mm having scanned after detection of heat. Similarly Group-2 (n=35) received 25 mg EB i.m (Estradiol Benzoate) after confirmation of follicular size of 10mm with ultrasound. Likewise, buffaloes of Group-3 (n=35) were administered normal saline respectively using as control. All buffaloes of three groups were inseminated after 12h of hCG, EB, and normal saline administration respectively. Pregnancy was assessed by ultrasound at 18th and 45th day post insemination. Pregnancy rates at 18th day were 38.2%, 34.5%, and 27.3% for G1, G2, and G3 respectively indicating that hCG and EB administered groups have no difference in results except control group having lower conception rate than both groups respectively. Similarly on 42nd day, these were 40.4%, 32.7% for G1 and G2 which are significantly higher than G3= 26.6 (control Group). Also, hCG and EB treated buffaloes have more probability of pregnancy than control group. Based on the findings of current study, it seems reasonable that the use of hCG and EB has been associated with improving pregnancy rates in non-breeding season of buffaloes.

Keywords: buffalo, hCG, EB, pregnancy rate, follicle, insemination

Procedia PDF Downloads 793
2027 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia

Authors: Schnell Zsuzsanna

Abstract:

Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.

Keywords: dyslexia, social cognition, transparency, modalities

Procedia PDF Downloads 79
2026 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 140
2025 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 303
2024 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 327
2023 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 616
2022 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 306