Search results for: vibration analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4283

Search results for: vibration analyses

3743 Industrial Ecology Perspectives of Food Supply Chains: A Framework of Analysis

Authors: Luciano Batista, Sylvia Saes, Nuno Fouto, Liam Fassam

Abstract:

This paper introduces the theoretical and methodological basis of an analytical framework conceived with the purpose of bringing industrial ecology perspectives into the core of the underlying disciplines supporting analyses in studies concerned with environmental sustainability aspects beyond the product cycle in a supply chain. Given the pressing challenges faced by the food sector, the framework focuses upon waste minimization through industrial linkages in food supply chains. The combination of industrial ecology practice with basic LCA elements, the waste hierarchy model, and the spatial scale of industrial symbiosis allows the standardization of qualitative analyses and associated outcomes. Such standardization enables comparative analysis not only between different stages of a supply chain, but also between different supply chains. The analytical approach proposed contributes more coherently to the wider circular economy aspiration of optimizing the flow of goods to get the most out of raw materials and cuts wastes to a minimum.

Keywords: by-product synergy, food supply chain, industrial ecology, industrial symbiosis

Procedia PDF Downloads 422
3742 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: Marcin Baranski

Abstract:

This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.

Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity

Procedia PDF Downloads 629
3741 Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System

Authors: M. M. El-Awad

Abstract:

The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system.

Keywords: thermodynamic optimisation, engineering education, excel, VBA, cascade refrigeration system

Procedia PDF Downloads 436
3740 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 359
3739 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach

Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia

Abstract:

Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.

Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure

Procedia PDF Downloads 315
3738 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modelled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: ride comfort, air spring, bus, fuzzy logic controller

Procedia PDF Downloads 432
3737 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions

Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski

Abstract:

The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.

Keywords: waste heat recovery, heat exchanger, CFD simulation, pems

Procedia PDF Downloads 574
3736 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 118
3735 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 322
3734 Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries

Authors: Min-Hwa Lim, Mi-Jeong Park, Ho-Young Jung

Abstract:

Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation.

Keywords: vanadium redox flow battery, ion exchange membrane, permeability, degradation, chemical stability

Procedia PDF Downloads 301
3733 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
3732 Effect of the Workpiece Position on the Manufacturing Tolerances

Authors: Rahou Mohamed , Sebaa Fethi, Cheikh Abdelmadjid

Abstract:

Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing but also the manufacturing constraints, for example geometrical defects of the machine, vibration, and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach have been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval.

Keywords: dispersion, tolerance, manufacturing, position

Procedia PDF Downloads 338
3731 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran

Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton

Abstract:

The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.

Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion

Procedia PDF Downloads 68
3730 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 454
3729 Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term

Authors: Fumiya Sugino, Naohiro Nakamura, Yuji Miyazu

Abstract:

In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree.

Keywords: eigenfrequency, damping ratio, ARX model, earthquake observation records

Procedia PDF Downloads 217
3728 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.

Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior

Procedia PDF Downloads 66
3727 Benthic Foraminiferal Responses to Coastal Pollution for Some Selected Sites along Red Sea, Egypt

Authors: Ramadan M. El-Kahawy, M. A. El-Shafeiy, Mohamed Abd El-Wahab, S. A. Helal, Nabil Aboul-Ela

Abstract:

Due to the economic importance of Safaga Bay, Quseir harbor and Ras Gharib harbor , a multidisciplinary approach was adopted to invistigate 27 surfecial sediment samples from the three sites and 9 samples for each in order to use the benthic foraminifera as bio-indicators for characterization of the environmental variations. Grain size analyses indicate that the bottom facies in the inner part of quseir is muddy while the inner part of Ras Gharib and Safaga is silty sand and those close to the entrance of Safaga bay and Ras Gharib is sandy facies while quseir still also muddy facies. geochemical data show high concentration of heavy-metals mainly in Ras Gharib due to oil leakage from the hydrocarbon oil field and Safaga bay due to the phosphate mining while quseir is medium concentration due to anthropocentric effect.micropaelontological analyses indicate the boundaries of the highest concentration of heavy metals and those of low concentration as well.the dominant benthic foraminifera in these three sites are Ammonia beccarii, Amphistigina and sorites. the study highlights the worsening of environmental conditions and also show that the areas in need of a priority recovery.

Keywords: benthic foraminifera, Ras Gharib, Safaga, Quseir, Red Sea, Egypt

Procedia PDF Downloads 351
3726 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa

Abstract:

The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 351
3725 Analyses of Extent of Effects of Siting Boreholes Nearby Open Landfill Dumpsite at Obosi Anambra Southeast of Nigeria

Authors: George Obinna Akuaka

Abstract:

Solid waste disposal techniques in Nigeria pose an environmental threat to the environment and to nearby resident. The presence of microbial physical and chemical concentration in boreholes samples nearby dumpsite implies that groundwater is normally contaminated by leachate infiltration from an open landfill dumpsite. In this study, the physicochemical and microbial analyses of water samples from hand dug well in the site and boreholes were carried out around the active landfill and from different distances (50 m to 200 m). leachate samples collected were used to ascertain the effect or extent of contamination on the groundwater quality. A total of 5 leachate samples and 5 samples of groundwater were collected, and all samples were analyzed for various physical and chemical parameters according to the standard methods. These include pH, Electrical conductivity, Total dissolved solid, BOD, OD, Temperature, major cations such as Mg²+ Ca²+, Fe²+ Cu²+, major anions NO³-, Cl-,SO⁴- PO⁴-, Zn, Ar, Cd, Cr, Hg, Pb, Ni are the heavy metals and metalloids. The mean values of the physical and chemical parameters obtained from both sites were compared with the established of the World Health Organization (WHO). The leachate samples were found to be higher in the concentration of the results obtained than that of the boreholes water, and the recorded mean values of heavy metals were above approved standard minimum limits. The results indicated that mercury and copper were not found in all the borehole water samples. Microbial analyses showed that total heterotrophic bacteria mean count ranged from 10.6 X10⁷ cfu/ml to 2.04x10⁷cfu/ml and 9.5 X 10⁷ cfu/ml to 18.9 X 10⁷ cfu/ml in leachate and borehole samples respectively. It also revealed that almost at the bacteria isolated in the leachate were also found in the water samples. This results indicated that heavy pollution in all the samples with most physicochemical parameters and microbes showed traceable pollution, which occurred as a result of leachate infiltration into the ground water.

Keywords: physicochemical, landfill dumpsite, microbial, leachate, groundwater

Procedia PDF Downloads 204
3724 Experience of Inpatient Life in Korean Complex Regional Pain Syndrome: A Phenomenological Study

Authors: Se-Hwa Park, En-Kyung Han, Jae-Young Lim, Hye-Jung Ahn

Abstract:

Purpose: The objective of this study is to provide basic data for understanding the substance of inpatient life with CRPS (Complex Regional Pain Syndrome) and developing efficient and effective nursing intervention. Methods: From September 2018 to November, we have interviewed 10 CRPS patients about inpatient experiences. To understand the implication of inpatient life experiences with CRPS and intrinsic structure, we have used the question: 'How about the inpatient experiences with CRPS'. For data analysis, the method suggested by Colaizzi was applied as a phenomenological method. Results: According to the analysis, the study participants' inpatient life process was structured in six categories: (a) breakthrough pain experience (b) the limitation of pain treatment, (c) worsen factors of pain during inpatient period, (d) treat method for pain, (e) positive experience for inpatient period, (f) requirements for medical team, family and people in hospital room. Conclusion: Inpatient with CRPS have experienced the breakthrough pain. They had expected immediate treatment for breakthrough pain, but they experienced severe pain because immediate treatment was not implemented. Pain-worsening factors which patients with CRPS are as follows: personal factors from negative emotions such as insomnia, stress, sensitive character, pain part touch or vibration stimulus on the bed, physical factors from high threshold or rapid speed during fast transfer, conflict with other people, climate factors such as humidity or low temperature, noise, smell, lack of space because of many visitors. Patients actively manage the pain committing into another tasks or diversion. And also, patients passively manage the pain, just suppress, give-up. They think positively about rehabilitation treatment. And they require the understanding and sympathy for other people, and emotional support, immediate intervention for medical team. Based on the results of this study, we suppose the guideline of systematic breakthrough pain management for the relaxation of sudden pain, using notice of informing caution for touch or vibration. And we need to develop non-medicine pain management nursing intervention.

Keywords: breakthrough pain, CRPS, complex regional pain syndrome, inpatient life experiences, phenomenological method

Procedia PDF Downloads 130
3723 Determinants of Child Anthropometric Indicators: A Case Study of Mali in 2015

Authors: Davod Ahmadigheidari

Abstract:

The main objective of this study was to explore prevalence of anthropometric indicators as well the factors associated with the anthropometric indications in Mali. Data on 2015, downloaded from the website of Unicef, were analyzed. A total of 16,467 women (ages 15-49 years) and 16,467 children (ages 0-59 months) were selected for the sample. Different statistical analyses, such as descriptive, crosstabs and binary logistic regression form the basis of this study. Child anthropometric indicators (i.e., wasting, stunting, underweight and BMI for age) were used as the dependent variables. SPSS Syntax from WHO was used to create anthropometric indicators. Different factors, such as child’s sex, child’s age groups, child’s diseases symptoms (i.e., diarrhea, cough and fever), maternal education, household wealth index and area of residence were used as independent variables. Results showed more than forty percent of Malian households were in nutritional crises (stunting (42%) and underweight (34%). Findings from logistic regression analyses indicated that low score of wealth index, low maternal education and experience of diarrhea in last two weeks increase the probability of child malnutrition.

Keywords: Mali, wasting, stunting, underweight, BMI for age and wealth index

Procedia PDF Downloads 157
3722 Effect of Exercise Training on Body Composition and Metabolic Profile in Older Adults during Cancer Treatment

Authors: Adeline Fontvieille, Hugo Parent-Roberge, Marie-France Langlois, Tamas Fulop, Michel Pavic, Eleonor Riesco

Abstract:

Introduction: Total lean body mass is reduced during cancer treatment. This loss is called cancer cachexia and is accompanied by a progressive loss of fat mass. In older adults, these body composition changes can have a larger impact on metabolic health, physical autonomy, and cancer survival. Although currently untreatable, exercise training could reduce these effects. Hence, the objective of this pilot study is to investigate if 12 weeks of exercise training during cancer treatment can mitigate the loss of muscle mass and fat mass in older adults. Methods: A total of 40 older adults (65-80 years) with an ongoing treatment for a curable cancer are currently recruited and randomised in two groups: 1) Combined training (EX, n=20) and 2) Control group (CON, n=20). All variables are measured before and after 12 weeks of intervention: Anthropometry (weight, height, body mass index), body composition (total fat mass, visceral adipose tissue, total and appendicular muscle mass; DXA), metabolic profile (HDL-C and LDL-C, triglycerides, glucose and insulin levels). Results: Preliminary analyses revealed no impact of exercise training on appendicular muscle mass (p=0,31) and fat mass (p=0,31). Furthermore, total body weight, waist circumference, HDL-cholesterol, LDL-cholesterol, glucose and insulin levels remained unchanged (all p ≥ 0.79) after 12 weeks of training. However, statistical analyses revealed that triglyceride levels slightly increased (p=0.03), irrespective of the group. Conclusion: Preliminary analyses did not reveal any impact of aerobic and resistance exercise training on body composition in oncogeriatric patients. Furthermore, exercise training seems not efficient to prevent the cancer treatment-related triglyceride levels increase.

Keywords: muscle mass, fat mass, metabolic profile, combined training, aging, cancer

Procedia PDF Downloads 364
3721 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul

Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt

Abstract:

Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.

Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow

Procedia PDF Downloads 367
3720 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances

Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: crane, dynamic model, overloading condition, vibration

Procedia PDF Downloads 575
3719 Floor Response Spectra of RC Frames: Influence of the Infills on the Seismic Demand on Non-Structural Components

Authors: Gianni Blasi, Daniele Perrone, Maria Antonietta Aiello

Abstract:

The seismic vulnerability of non-structural components is nowadays recognized to be a key issue in performance-based earthquake engineering. Recent loss estimation studies, as well as the damage observed during past earthquakes, evidenced how non-structural damage represents the highest rate of economic loss in a building and can be in many cases crucial in a life-safety view during the post-earthquake emergency. The procedures developed to evaluate the seismic demand on non-structural components have been constantly improved and recent studies demonstrated how the existing formulations provided by main Standards generally ignore features which have a sensible influence on the definition of the seismic acceleration/displacements subjecting non-structural components. Since the influence of the infills on the dynamic behaviour of RC structures has already been evidenced by many authors, it is worth to be noted that the evaluation of the seismic demand on non-structural components should consider the presence of the infills as well as their mechanical properties. This study focuses on the evaluation of time-history floor acceleration in RC buildings; which is a useful mean to perform seismic vulnerability analyses of non-structural components through the well-known cascade method. Dynamic analyses are performed on an 8-storey RC frame, taking into account the presence of the infills; the influence of the elastic modulus of the panel on the results is investigated as well as the presence of openings. Floor accelerations obtained from the analyses are used to evaluate the floor response spectra, in order to define the demand on non-structural components depending on the properties of the infills. Finally, the results are compared with formulations provided by main International Standards, in order to assess the accuracy and eventually define the improvements required according to the results of the present research work.

Keywords: floor spectra, infilled RC frames, non-structural components, seismic demand

Procedia PDF Downloads 326
3718 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals

Authors: Bahattin Kanal, Nursel Akçam

Abstract:

Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.

Keywords: HyperLynx, printed circuit board, s parameters, ethernet

Procedia PDF Downloads 36
3717 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 258
3716 Grammatical and Lexical Explorations on ‘Outer Circle’ Englishes and ‘Expanding Circle’ Englishes: A Corpus-Based Comparative Analysis

Authors: Orlyn Joyce D. Esquivel

Abstract:

This study analyzed 50 selected research papers from professional language and linguistic academic journals to portray the differences between Kachru’s (1994) outer circle and expanding circle Englishes. The selected outer circle Englishes include those of Bangladesh, Malaysia, the Philippines, India, and Singapore; and the selected expanding circle Englishes are those of China, Indonesia, Japan, Korea, and Thailand. The researcher built ten corpora (five research papers for each corpus) to represent each variety of Englishes. The corpora were examined under grammatical and lexical features using Modified English TreeTagger in Sketch Engine. Results revealed the distinct grammatical and lexical features through the table and textual analyses, illustrated from the most to least dominant linguistic elements. In addition, comparative analyses were done to distinguish the features of each of the selected Englishes. The Language Change Theory was used as a basis in the discussion. Hence, the findings suggest that the ‘outer circle’ Englishes and ‘expanding circle’ Englishes will continue to drift from International English.

Keywords: applied linguistics, English as a global language, expanding circle Englishes, global Englishes, outer circle Englishes

Procedia PDF Downloads 162
3715 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 270
3714 Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale

Authors: Mohammed A. Alazawi, Shiguo Jiang, Steven F. Messner

Abstract:

Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control.

Keywords: inhomogeneous K function, residential burglary, spatial point pattern, spatial scale, temporal scale

Procedia PDF Downloads 346