Search results for: user-context sensitivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1893

Search results for: user-context sensitivity

1353 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 227
1352 Microbiological Profile of UTI along with Their Antibiotic Sensitivity Pattern with Special Reference to Nitrofurantoin

Authors: Rupinder Bakshi, Geeta Walia, Anita Gupta

Abstract:

Introduction: Urinary tract infections (UTI) are considered to be one of the most common bacterial infections with an estimated annual global incidence of 150 million. Antimicrobial drug resistance is one of the major threats due to widespread usage of uncontrolled antibiotics. Materials and Methods: A total number of 9149 urine samples were collected from R.H Patiala and processed in the Department of Microbiology G.M.C Patiala. Urine samples were inoculated on MacConkey’s and blood agar plates by using calibrated loop delivering 0.001 ml of sample and incubated at 37 °C for 24 hrs. The organisms were identified by colony characters, gram’s staining and biochemical reactions. Antimicrobial susceptibility of the isolates was determined against various antimicrobial agents (Hi – Media Mumbai India) by Kirby-Bauer disk diffusion method on Muller Hinton agar plates. Results: Maximum patients were in the age group of 21-30 yrs followed by 31-40 yrs. Males (34%) are less prone to urinary tract infections than females (66%). Out of 9149 urine sample, the culture was positive in 25% (2290) samples. Esch. coli was the most common isolate 60.3% (n = 1378) followed by Klebsiella pneumoniae 13.5% (n = 310), Proteus spp. 9% (n = 209), Staphylococcus aureus 7.6 % (n = 173), Pseudomonas aeruginosa 3.7% (n = 84), Citrobacter spp. 3.1 % (70), Staphylococcus saprophyticus 1.8 % (n = 142), Enterococcus faecalis 0.8%(n=19) and Acinetobacter spp. 0.2%(n=5). Gram negative isolates showed higher sensitivity towards, Piperacillin +Tazobactum (67%), Amikacin (80%), Nitrofurantoin (82%), Aztreonam (100%), Imipenem (100%) and Meropenam (100%) while gram positive showed good response towards Netilmicin (69%), Nitrofurantoin (79%), Linezolid (98%), Vancomycin (100%) and Teicoplanin (100%). 465 (23%) isolates were resistant to Penicillins, 1st generation and 2nd generation Cehalosporins which were further tested by double disk approximation test and combined disk method for ESBL production. Out of 465 isolates, 375 were ESBLs consisting of n 264 (70.6%) Esch.coli and 111 (29.4%) Klebsiella pneumoniae. Susceptibility of ESBL producers to Imipenem, Nitrofurantoin and Amikacin were found to be 100%, 76%, and 75% respectively. Conclusion: Uropathogens are increasingly showing resistance to many antibiotics making empiric management of outpatients UTIs challenging. Ampicillin, Cotrimoxazole, and Ciprofloxacin should not be used in empiric treatment. Nitrofurantoin could be used in lower urinary tract infection. Knowledge of uropathogens and their antimicrobial susceptibility pattern in a geographical region will help inappropriate and judicious antibiotic usage in a health care setup.

Keywords: Urinary Tract Infection, UTI, antibiotic susceptibility pattern, ESBL

Procedia PDF Downloads 344
1351 Disposable PANI-CeO2 Sensor for the Electrocatalytic Simultaneous Quantification of Amlodipine and Nebivolol

Authors: Nimisha Jadon, Rajeev Jain, Swati Sharma

Abstract:

A chemically modified carbon paste sensor has been developed for the simultaneous determination of amlodipine (AML) and nebivolol (NBV). Carbon paste electrode (CPE) was fabricated by the addition of Gr/PANI-CeO2. Gr/PANI-CeO2/CPE has achieved excellent electrocatalytic activity and sensitivity. AML and NBV exhibited oxidation peaks at 0.70 and 0.90 V respectively on Gr/ PANI-CeO2/CPE. The linearity range of AML and NBV was 0.1 to 1.6 μgmL-1 in BR buffer (pH 8.0). The Limit of detection (LOD) was 20.0 ngmL-1 for AML and 30.0 ngmL-1 for NBV and limit of quantification (LOQ) was 80.0 ngmL-1 for AML and 100 ngmL-1 for NBV respectively. These analyses were also determined in pharmaceutical formulation and human serum and good recovery was obtained for the developed method.

Keywords: amlodipine, nebivolol, square wave voltammetry, carbon paste electrode, simultaneous quantification

Procedia PDF Downloads 354
1350 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 353
1349 Innovative Acoustic Emission Techniques for Concrete Health Monitoring

Authors: Rahmat Ali, Beenish Khan, Aftabullah, Abid A. Shah

Abstract:

This research is an attempt to investigate the wide range of events using acoustic emission (AE) sensors of the concrete cubes subjected to different stress condition loading and unloading of concrete cubes. A total of 27 specimens were prepared and tested including 18 cubic (6”x6”x6”) and nine cylindrical (4”x8”) specimens were molded from three batches of concrete using w/c of 0.40, 0.50, and 0.60. The compressive strength of concrete was determined from concrete cylinder specimens. The deterioration of concrete was evaluated using the occurrence of felicity and Kaiser effects at each stress condition. It was found that acoustic emission hits usually exceeded when damage increases. Additionally, the correlation between AE techniques and the load applied were determined by plotting the normalized values. The influence of w/c on sensitivity of the AE technique in detecting concrete damages was also investigated.

Keywords: acoustic emission, concrete, felicity ratio, sensors

Procedia PDF Downloads 362
1348 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 209
1347 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 390
1346 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 114
1345 Association Between Swallowing Disorders and Cognitive Disorders in Adults: Systematic Review and Metaanalysis

Authors: Shiva Ebrahimian Dehaghani, Afsaneh Doosti, Morteza Zare

Abstract:

Background: There is no consensus regarding the association between dysphagia and cognition. Purpose: The aim of this study was to quantitatively and qualitatively analyze the available evidence on the direction and strength of association between dysphagia and cognition. Methodology: PubMed, Scopus, Embase and Web of Science were searched about the association between dysphagia and cognition. A random-effects model was used to determine weighted odds ratios (OR) and 95% confidence intervals (CI). Sensitivity analysis was performed to determine the impact of each individual study on the pooled results. Results: A total of 1427 participants showed that some cognitive disorders were significantly associated with dysphagia (OR = 3.23; 95% CI, 2.33–4.48). Conclusion: The association between cognition and swallowing disorders suggests that multiple neuroanatomical systems are involved in these two functions.

Keywords: adult, association, cognitive impairment, dysphagia, systematic review

Procedia PDF Downloads 161
1344 Primer Design for the Detection of Secondary Metabolite Biosynthetic Pathways in Metagenomic Data

Authors: Jeisson Alejandro Triana, Maria Fernanda Quiceno Vallejo, Patricia del Portillo, Juan Manuel Anzola

Abstract:

Most of the known antimicrobials so far discovered are secondary metabolites. The potential for new natural products of this category increases as new microbial genomes and metagenomes are being sequenced. Despite the advances, there is no systematic way to interrogate metagenomic clones for their potential to contain clusters of genes related to these pathways. Here we analyzed 52 biosynthetic pathways from the AntiSMASH database at the protein domain level in order to identify domains of high specificity and sensitivity with respect to specific biosynthetic pathways. These domains turned out to have various degrees of divergence at the DNA level. We propose PCR assays targetting such domains in-silico and corroborated one by Sanger sequencing.

Keywords: bioinformatic, anti smash, antibiotics, secondary metabolites, natural products, protein domains

Procedia PDF Downloads 178
1343 Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria

Authors: M. Naimi, M. B. Khaled

Abstract:

The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46, and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality.

Keywords: exploratory test, lactic acid bacteria, crude bacteriocins, spoilage, pathogens

Procedia PDF Downloads 213
1342 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
1341 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes

Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger

Abstract:

Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.

Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene

Procedia PDF Downloads 480
1340 Evaluation of the Radiolabelled 68GA-DOTATOC Complex in Adenocarcinoma Breast Cancer

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, B. Alirzapour, A. R. Jalilian, A. Ramazani

Abstract:

Nowadays, 68Ga-DOTATOC has been known as a potential agent for the detection of neuroendocrine tumours and it has indicated higher sensitivity compared with the 111In-Octeroetide. The aim of this study was to evaluate the effectiveness of this new agent in the diagnosis of adenocarcinoma breast cancer. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by the specific activity of 39.6 TBq/mmol. 37 MBq of the complex was injected intravenously into the BULB/c mice with adenocarcinoma breast cancer. PET/CT images were acquired after 30, 60 and 90 min post injection demonstrated significant accumulation in the tumour sites. Also, considerable activity was observed in the kidney and bladder as the main routs of excretion. Generally, the results showed that 68Ga-DOTATOC can be considered as a suitable complex for diagnosis of the adenocarcinoma breast cancer using PET procedure.

Keywords: adenocarcinoma breast cancer, 68Ga, octreotide, imaging

Procedia PDF Downloads 341
1339 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis

Authors: Xi Chen, King-Yip Cheng

Abstract:

Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.

Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes

Procedia PDF Downloads 67
1338 A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples

Authors: Chand Pasha, Yasser Turki Alharbi, Krasamira Stancheva

Abstract:

A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations.

Keywords: folic acid determination, spectrophotometry, diazotization, thiourea, pharmaceutical dosage samples

Procedia PDF Downloads 76
1337 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 201
1336 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 423
1335 Isogeometric Topology Optimization in Cracked Structures Design

Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin

Abstract:

In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.

Keywords: topology optimization, isogeometric, NURBS, design

Procedia PDF Downloads 492
1334 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals

Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama

Abstract:

Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.

Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram

Procedia PDF Downloads 446
1333 A New Prediction Model for Soil Compression Index

Authors: D. Mohammadzadeh S., J. Bolouri Bazaz

Abstract:

This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP

Procedia PDF Downloads 374
1332 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 500
1331 Highly Sensitive, Low-Cost Oxygen Gas Sensor Based on ZnO Nanoparticles

Authors: Xin Chang, Daping Chu

Abstract:

Oxygen gas sensing technology has progressed since the last century and it has been extensively used in a wide range of applications such as controlling the combustion process by sensing the oxygen level in the exhaust gas of automobiles to ensure the catalytic converter is in a good working condition. Similar sensors are also used in industrial boilers to make the combustion process economic and environmentally friendly. Different gas sensing mechanisms have been developed: ceramic-based potentiometric equilibrium sensors and semiconductor-based sensors by oxygen absorption. In this work, we present a highly sensitive and low-cost oxygen gas sensor based on Zinc Oxide nanoparticles (average particle size of 35nm) dispersion in ethanol. The sensor is able to measure the pressure range from 103 mBar to 10-5 mBar with a sensitivity of more than 102 mA/Bar. The sensor is also erasable with heat.

Keywords: nanoparticles, oxygen, sensor, ZnO

Procedia PDF Downloads 137
1330 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity

Procedia PDF Downloads 656
1329 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States

Authors: Jarek Krajewski, David Daxberger, Luzi Beyer

Abstract:

Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.

Keywords: heart rate, PTSD, PPGI, stress, preprocessing

Procedia PDF Downloads 123
1328 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing

Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel

Abstract:

There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.

Keywords: climate change, resilience, remote sensing, demographic and health surveys

Procedia PDF Downloads 165
1327 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 456
1326 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
1325 Nanoparticles Using in Chiral Analysis with Different Methods of Separation

Authors: Bounoua Nadia, Rebizi Mohamed Nadjib

Abstract:

Chiral molecules in relation to particular biological roles are stereoselective. Enantiomers differ significantly in their biochemical responses in a biological environment. Despite the current advancement in drug discovery and pharmaceutical biotechnology, the chiral separation of some racemic mixtures continues to be one of the greatest challenges because the available techniques are too costly and time-consuming for the assessment of therapeutic drugs in the early stages of development worldwide. Various nanoparticles became one of the most investigated and explored nanotechnology-derived nanostructures, especially in chirality, where several studies are reported to improve the enantiomeric separation of different racemic mixtures. The production of surface-modified nanoparticles has contributed to these limitations in terms of sensitivity, accuracy, and enantioselectivity that can be optimized and therefore makes these surface-modified nanoparticles convenient for enantiomeric identification and separation.

Keywords: chirality, enantiomeric recognition, selectors, analysis, surface-modified nanoparticles

Procedia PDF Downloads 94
1324 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces

Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin

Abstract:

Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.

Keywords: surface contamination, sampling kit, analytical method, sensitivity

Procedia PDF Downloads 132