Search results for: spherical clustering
462 Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release
Authors: H. R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, H. Valizadeh
Abstract:
Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties.Keywords: drug release, lipid nanoparticles, spironolactone, stability
Procedia PDF Downloads 331461 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 151460 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 83459 The Efficacy of Open Educational Resources in Students’ Performance and Engagement
Authors: Huda Al-Shuaily, E. M. Lacap
Abstract:
Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.Keywords: EDM, learning analytics, moodle, OER, student-engagement
Procedia PDF Downloads 339458 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis
Authors: Lena Payati, Maria Kazou, Effie Tsakalidou
Abstract:
Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi
Procedia PDF Downloads 114457 Synthesize And Physicochemical Characterization Of Biomimetic Scaffold Of Gelatin/zn-incorporated 58s Bioactive Glass
Authors: SeyedMohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn)in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and alkaline phosphate (ALP) activity test were carried out for investigation of MC3T3-E1cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases, and also HA characteristic peaks were detected by X-ray diffraction spectroscopy (XRD)after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of alkaline phosphatase activity (ALP) test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity, and growth of MC3T3-E1cellsin in comparison with other samples in bone tissue engineering.Keywords: scaffold, gelatin, modified bioactive glass, alp, bone tissue engineering
Procedia PDF Downloads 94456 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 586455 Investigation on Polymer Based Nano-Silver as Food Packaging Materials
Authors: A. M. Metak, T. T. Ajaal, Amal Metak, Tawfik Ajaal
Abstract:
Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.Keywords: nano-silver, antimicrobial food packaging, migration, titanium dioxide
Procedia PDF Downloads 368454 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data
Authors: Rugang Tian
Abstract:
In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.Keywords: cattle, whole-genome, population structure, adaptation
Procedia PDF Downloads 73453 Advanced Nanostructured Materials and Their Application for Solar Fuel
Authors: A. Hegazy, Ahmed Elsayed, Essam El Shenawy, N. Allam, Hala Handal, K. R. Mahmoud
Abstract:
Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production.Keywords: positron annihilation, solar energy, TiO2 nanoparticles, water splitting
Procedia PDF Downloads 145452 Bioinformatics Analysis of DGAT1 Gene in Domestic Ruminnants
Authors: Sirous Eydivandi
Abstract:
Diacylglycerol-O-acyltransferase (DGAT1) gene encodes diacylglycerol transferase enzyme that plays an important role in glycerol lipid metabolism. DGAT1 is considered to be the key enzyme in controlling the synthesis of triglycerides in adipocytes. This enzyme catalyzes the final step of triglyceride synthesis (transform triacylglycerol (DAG) into triacylglycerol (TAG). A total of 20 DGAT1 gene sequences and corresponding amino acids belonging to 4 species include cattle, goats, sheep and yaks were analyzed, and the differentiation within and among the species was also studied. The length of the DGAT1 gene varies greatly, from 1527 to 1785 bp, due to deletion, insertion, and stop codon mutation resulting in elongation. Observed genetic diversity was higher among species than within species, and Goat had more polymorphisms than any other species. Novel amino acid variation sites were detected within several species which might be used to illustrate the functional variation. Differentiation of the DGAT1 gene was obvious among species, and the clustering result was consistent with the taxonomy in the National Center for Biotechnology Information.Keywords: DGAT1gene, bioinformatic, ruminnants, biotechnology information
Procedia PDF Downloads 491451 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 402450 Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug
Authors: Vishal Kumar Gupta
Abstract:
Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium.Keywords: IPN, hydrogels, DSC, SEM
Procedia PDF Downloads 269449 Green Synthesis of Nano Liposomes Containing Berberine Chlorideagainst Leishmania major
Authors: Ali Fattahi Bafghi, Abolghasem Siyadatpanah, Farzaneh Mirzaei, Fahimeh Pournasir, Roghayeh Norouzi, Maria De Lourdes Pereira
Abstract:
Leishmaniasis caused by Leishmania major is one of the main infectious diseases that affect populations in developing countries around the world. We assessed the effectiveness of berberine chloride nano-liposome (BcNLs) against L. major promastigotes in vitro. Nano-liposomal berberine chloride was prepared using the thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Anti-Leishmania effect of different concentrations (0.05-60 µg/ml) of BcNLs as studied in L. major [MRHO/IR/75/ER] at 24, 48, and 72 h using the hemocytometer technique. Berberine chloride was successfully loaded into nano-liposomes with an encapsulation efficiency of 85.54%. The surface charge of nanoparticles is neutral, and the morphology of nano-liposomal berberine chloride is spherical without any agglomeration. Cell viability assay was performed on the HFF cell line to show the biocompatibility of liposome nanoparticles. IC50 of BcNPs at 24, 48, and 72 h against L. major were found to be 7.6, 5.96, and 3.19 µg/ml, respectively. BcNLs showed a significant anti-Leishmania effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigation. The results showed that the BcNLs agent is effective against L. major promastigotes and may be a promising alternative to current treatments.Keywords: Leishmania major, berberine chloride, nano-liposomes, cutaneous leishmaniasis
Procedia PDF Downloads 151448 Green Catalytic Conversion of Some Aromatic Alcohols to Acids by NiO₂ Nanoparticles (NPNPs) in Water
Authors: Abdel Ghany F. Shoair, Mai M. A. H. Shanab
Abstract:
The basic aqueous systems NiSO4.6H₂O / K₂S₂O₈ (PH= 14) or NiSO₄.6H₂O / KBrO₃ (PH = 11.5) were investigated for the catalytic conversion benzyl alcohol and some para-substituted benzyl alcohols to their corresponding acids in 75-97 % yield at room temperature. The active species was isolated and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction, EDX and FT-IR techniques and identified as NiO₂ nanoparticles (NPNPs). The SEM and TEM images of nickel peroxide samples show a fine spherical-like aggregation of NiO₂ molecules with a nearly homogeneous partial size and confirm the aggregation's size to be in the range of 2-3 nm. The yields, turnover (TO) and turn over frequencies (TOF) were calculated. It was noticed that the aromatic alcohols containing para-substituted electron donation groups gave better yields than those having electron-withdrawing groups. The optimum conditions for this catalytic reaction were studied using benzyl alcohol as a model. The mechanism of the catalytic conversion reaction was suggested, in which the produced (NPNPs) convert alcohols to acids in two steps through the formation of the corresponding aldehyde. The produced NiO, because of this conversion, is converted again to (NPNPs) by an excess of K₂S₂O₈ or KBrO₃. This catalytic cycle continues until all the substrate is oxidized.Keywords: Nickel, oxidation, catalysts, benzyl alcohol
Procedia PDF Downloads 77447 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster
Authors: Trapti Sharma, Devesh Kumar Srivastava
Abstract:
This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.Keywords: hadoop, mapreduce, k-mediod, validation, verification
Procedia PDF Downloads 369446 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 413445 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials
Authors: Matthieu-P. Schapranow
Abstract:
Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering
Procedia PDF Downloads 493444 HPTLC Metabolite Fingerprinting of Artocarpus champeden Stembark from Several Different Locations in Indonesia and Correlation with Antimalarial Activity
Authors: Imam Taufik, Hilkatul Ilmi, Puryani, Mochammad Yuwono, Aty Widyawaruyanti
Abstract:
Artocarpus champeden Spreng stembark (Moraceae) in Indonesia well known as ‘cempedak’ had been traditionally used for malarial remedies. The difference of growth locations could cause the difference of metabolite profiling. As a consequence, there were difference antimalarial activities in spite of the same plants. The aim of this research was to obtain the profile of metabolites that contained in A. champeden stembark from different locations in Indonesia for authentication and quality control purpose of this extract. The profiling had been performed by HPTLC-Densitometry technique and antimalarial activity had been also determined by HRP2-ELISA technique. The correlation between metabolite fingerprinting and antimalarial activity had been analyzed by Principle Component Analysis, Hierarchical Clustering Analysis and Partial Least Square. As a result, there is correlation between the difference metabolite fingerprinting and antimalarial activity from several different growth locations.Keywords: antimalarial, artocarpus champeden spreng, metabolite fingerprinting, multivariate analysis
Procedia PDF Downloads 311443 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 558442 Magnetic Field Induced Tribological Properties of Magnetic Fluid
Authors: Kinjal Trivedi, Ramesh V. Upadhyay
Abstract:
Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction.Keywords: four ball tester, magnetic fluid, nanolubricant, tribology
Procedia PDF Downloads 235441 Development and in vitro Characterization of Loteprednol Etabonate-Loaded Polymeric Nanoparticles for Ocular Delivery
Authors: Abhishek Kumar Sah, Preeti K. Suresh
Abstract:
Effective drug delivery to the eye is a massive challenge, due to complicated physiological ocular barriers, rapid washout by tear and nasolachrymal drainage. Thus, most of the conventional ophthalmic formulations face the problem of low ocular bioavailability. Ophthalmic drug therapy can be improved by enhancing the precorneal drug retention along with improved drug penetration. The aim of the present investigation was to develop and evaluate a biodegradable polymer poly (D, L-lactide-co-glycolide) (PLGA) coated nanoparticulate carrier of loteprednol etabonate. PLGA nanoparticles were prepared by modified emulsification/solvent diffusion method using high-speed homogenizer followed by sonication. The nanoparticles were characterized for various parameters such as particle size, zeta potential, polydispersity index, X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), in vitro drug release profile and stability. The prepared nanocarriers displayed mean particle size in the range of 271.7 to 424.4 nm, with zeta potential less than –10 mV. In vitro release in simulated tear fluid (STF) nanocarrier showed an extended release profile of loteprednol etabonate. TEM confirmed the spherical morphology and smooth surface of the particles. All the prepared formulations were found to be stable at varying temperatures.Keywords: drug delivery, ocular delivery, polymeric nanoparticles, loteprednol etabonate
Procedia PDF Downloads 551440 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 114439 Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite
Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae
Abstract:
Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. Twenty morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.Keywords: bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology
Procedia PDF Downloads 68438 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 297437 Titanium Nitride Nanoparticles for Biological Applications
Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh
Abstract:
Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride
Procedia PDF Downloads 178436 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images
Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan
Abstract:
Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices
Procedia PDF Downloads 333435 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia
Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan
Abstract:
Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.Keywords: multiplex polymerase chain reaction, toxic shock syndrome, Staphylococcus aureus, nosocomial infections
Procedia PDF Downloads 339434 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 369433 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 331