Search results for: sesimic data processing
27045 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures
Authors: Yiwei Li, Mingyu Gao
Abstract:
Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units
Procedia PDF Downloads 9927044 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels
Authors: Martin Elstner
Abstract:
Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.Keywords: bioanalytics, hydrogels, information processing, microvalve
Procedia PDF Downloads 30927043 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques
Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang
Abstract:
Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern
Procedia PDF Downloads 23827042 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street
Authors: Victor Pesco Kassa
Abstract:
This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.Keywords: DAWASA, NRW, Esri, EURA, ArcGIS
Procedia PDF Downloads 8327041 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 46827040 Differentiation between Different Rangeland Sites Using Principal Component Analysis in Semi-Arid Areas of Sudan
Authors: Nancy Ibrahim Abdalla, Abdelaziz Karamalla Gaiballa
Abstract:
Rangelands in semi-arid areas provide a good source for feeding huge numbers of animals and serving environmental, economic and social importance; therefore, these areas are considered economically very important for the pastoral sector in Sudan. This paper investigates the means of differentiating between different rangelands sites according to soil types using principal component analysis to assist in monitoring and assessment purposes. Three rangeland sites were identified in the study area as flat sandy sites, sand dune site, and hard clay site. Principal component analysis (PCA) was used to reduce the number of factors needed to distinguish between rangeland sites and produce a new set of data including the most useful spectral information to run satellite image processing. It was performed using selected types of data (two vegetation indices, topographic data and vegetation surface reflectance within the three bands of MODIS data). Analysis with PCA indicated that there is a relatively high correspondence between vegetation and soil of the total variance in the data set. The results showed that the use of the principal component analysis (PCA) with the selected variables showed a high difference, reflected in the variance and eigenvalues and it can be used for differentiation between different range sites.Keywords: principal component analysis, PCA, rangeland sites, semi-arid areas, soil types
Procedia PDF Downloads 18927039 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 11627038 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms
Authors: Samantha Rix
Abstract:
The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.Keywords: cognitive processing, language learners, language proficiency, learning strategies
Procedia PDF Downloads 47727037 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods
Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang
Abstract:
Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation
Procedia PDF Downloads 34527036 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging
Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang
Abstract:
The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.
Procedia PDF Downloads 53127035 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 41427034 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds
Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov
Abstract:
Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing
Procedia PDF Downloads 48827033 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 14027032 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding
Procedia PDF Downloads 17527031 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 41327030 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance
Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar
Abstract:
The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth
Procedia PDF Downloads 33327029 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 12527028 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology
Authors: Yonggu Jang, Jisong Ryu, Woosik Lee
Abstract:
The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities
Procedia PDF Downloads 6227027 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 29927026 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 10327025 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 2027024 High-Temperature Behavior of Boiler Steel by Friction Stir Processing
Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar
Abstract:
High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing
Procedia PDF Downloads 23927023 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples
Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann
Abstract:
Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing
Procedia PDF Downloads 28327022 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development
Authors: Cinthya Olivares Garita
Abstract:
Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form
Procedia PDF Downloads 3127021 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: mining big data, big data, machine learning, telecommunication
Procedia PDF Downloads 41027020 Big Data Analytics and Public Policy: A Study in Rural India
Authors: Vasantha Gouri Prathapagiri
Abstract:
Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.Keywords: Digital India Mission, public service delivery system, public policy, Indian administration
Procedia PDF Downloads 16027019 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 7827018 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 44227017 Parallel Processing in near Absence of Attention: A Study Using Dual-Task Paradigm
Authors: Aarushi Agarwal, Tara Singh, I.L Singh, Anju Lata Singh, Trayambak Tiwari
Abstract:
Simple discrimination in near absence of attention has been widely observed. Dual-task studies with natural scenes studies have been claimed as being preattentive in nature that facilitated categorization simultaneously with the attentional demanding task. So in this study, multiple images at the periphery are presented, initiating parallel processing in near absence of attention. For the central demanding task rotated letters were presented in both conditions, while in periphery natural and animal images were presented. To understand the breakpoint of ability to perform in near absence of attention one, two and three peripheral images were presented simultaneously with central task and subjects had to respond when all belong to the same category. Individual participant performance did not show a significant difference in both conditions central and peripheral task when the single peripheral image was shown. In case of two images high-level parallel processing could take place with little attentional resources. The eye tracking results supports the evidence as no major saccade was made in a large number of trials. Three image presentations proved to be a breaking point of the capacities to perform outside attentional assistance as participants showed a confused eye gaze pattern which failed to make the natural and animal image discriminations. Thus, we can conclude attention and awareness being independent mechanisms having limited capacities.Keywords: attention, dual task pardigm, parallel processing, break point, saccade
Procedia PDF Downloads 21927016 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 318