Search results for: scale invariant feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7513

Search results for: scale invariant feature

6973 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus

Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.

Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology

Procedia PDF Downloads 415
6972 A Standard-Based Competency Evaluation Scale for Preparing Qualified Adapted Physical Education Teachers

Authors: Jiabei Zhang

Abstract:

Although adapted physical education (APE) teacher preparation programs are available in the nation, a consistent standards-based competency evaluation scale for preparing of qualified personnel for teaching children with disabilities in APE cannot be identified in the literature. The purpose of this study was to develop a standard-based competency evaluation scale for assessing qualifications for teaching children with disabilities in APE. Standard-based competencies were reviewed and identified based on research evidence documented as effective in teaching children with disabilities in APE. A standard-based competency scale was developed for assessing qualifications for teaching children with disabilities in APE. This scale included 20 standard-based competencies and a 4-point Likert-type scale for each standard-based competency. The first standard-based competency is knowledgeable of the causes of disabilities and their effects. The second competency is the ability to assess physical education skills of children with disabilities. The third competency is able to collaborate with other personnel. The fourth competency is knowledgeable of the measurement and evaluation. The fifth competency is to understand federal and state laws. The sixth competency is knowledgeable of the unique characteristics of all learners. The seventh competency is the ability to write in behavioral terms for objectives. The eighth competency is knowledgeable of developmental characteristics. The ninth competency is knowledgeable of normal and abnormal motor behaviors. The tenth competency is the ability to analyze and adapt the physical education curriculums. The eleventh competency is to understand the history and the philosophy of physical education. The twelfth competency is to understand curriculum theory and development. The thirteenth competency is the ability to utilize instructional designs and plans. The fourteenth competency is the ability to create and implement physical activities. The fifteenth competency is the ability to utilize technology applications. The sixteenth competency is to understand the value of program evaluation. The seventeenth competency is to understand professional standards. The eighteenth competency is knowledgeable of the focused instruction and individualized interventions. The nineteenth competency is able to complete a research project independently. The twentieth competency is to teach children with disabilities in APE independently. The 4-point Likert-type scale ranges from 1 for incompetent to 4 for highly competent. This scale is used for assessing if one completing all course works is eligible for receiving an endorsement for teaching children with disabilities in APE, which is completed based on the grades earned on three courses targeted for each standard-based competency. A mean grade received in three courses primarily addressing a standard-based competency will be marked on a competency level in the above scale. The level 4 is marked for a mean grade of A one receives over three courses, the level 3 for a mean grade of B over three courses, and so on. One should receive a mean score of 3 (competent level) or higher (highly competent) across 19 standard-based competencies after completing all courses specified for receiving an endorsement for teaching children with disabilities in APE. The validity, reliability, and objectivity of this standard-based competency evaluation scale are to be documented.

Keywords: evaluation scale, teacher preparation, adapted physical education teachers, and children with disabilities

Procedia PDF Downloads 116
6971 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 150
6970 Development and Psychometric Evaluation of the Malaysian Multi-Ethnic Discrimination Scale

Authors: Chua Bee Seok, Shamsul Amri Baharuddin, Ferlis Bahari, Jasmine Adela Mutang, Lailawati Madlan, Rosnah Ismail, Asong Joseph

Abstract:

Malaysia is a country famously known for its multiple unique cultural and ethnic diversities. Despite the diversity of culture, customs and beliefs, respectively, Malaysia still be able to stand as a harmonious country. However, if there is an attitude of stereotypes, prejudice and discrimination among ethnic, it may seriously affect the solidarity between people in Malaysia. Thus, this study focuses on constructing a scale measuring the Malaysian experience, strategy and effect of ethnic discrimination. To develop a quantitative measure on ethnic discrimination directed against Malaysian, a three-step process is proposed: Exploratory factor analysis, validity analysis, and internal consistency reliability analysis. Results, limitations, and implications of the study are discussed.

Keywords: test development, Malaysian multi-ethnic discrimination scale, exploratory factor analysis, validity, multi-ethnic, reliability, psychometrics

Procedia PDF Downloads 742
6969 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
6968 A Study of Stress and Coping Strategies of School Teachers

Authors: G.S. Patel

Abstract:

In this research paper the discussion have been made on teachers work mental stress and coping strategies. Stress Measurement scale was developed for school teachers. All the scientific steps of test construction was followed. For this test construction, different factors like teachers workplace, teachers' residential area, teachers' family life, teachers' ability and skills, economic factors and other factors to construct teachers stress measurement scale. In this research tool, situational statements have been made and teachers have to give a response in each statement on five-point rating scale what they experienced in their daily life. Special features of the test also established like validity and reliability of this test and also computed norms for its interpretation. A sample of 320 teachers of school teachers of Gujarat state was selected by Cluster sampling technique. t-test was computed for testing null hypothesis. The main findings of the present study are Urban area teachers feel more stressful situation compare to rural area teachers. Those teachers who live in the joint family feel less stress compare to teachers who live in a nuclear family. This research work is very useful to prepare list of activities to reduce teachers mental stress.

Keywords: stress measurement scale, level of stress, validity, reliability, norms

Procedia PDF Downloads 195
6967 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
6966 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh

Abstract:

It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 205
6965 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 502
6964 Impact of Large Scale Solar Power Plant on Airports and Aviation

Authors: Munirah Stapah Salleh, Ahmad Rosly Abbas, Sazalina Zakaria, Nur Iffika Ruslan, Nurfaziera Rahim

Abstract:

One of the areas that require a massive amount of energy is the airport. Hence, several airports have increased their reliance on renewable energy, specifically solar photovoltaic (PV) systems, to solve the issue. The interest regarding the installations of airport-based solar farms caught much attention. This, at the same time, helps to minimize the reliance on conventional energy sources that are fossil-based. However, many concerns were raised on the solar PV systems, especially on the effect of potential glare occurrence to the pilots during their flies. This paper will be discussing both the positive and negative impact of the large scale solar power plant on airports and aviation. Installing the large scale solar have negative impacts on airport and aviation, such as physical collision hazards, potential interference, or voltage problems with aircraft navigational and surveillance equipment as well as potential glare. On the positive side, it helps to lower environmental footprint, acquiring less energy from the utility provider, which are traditionally highly relying on other energy sources that have larger effects on the environment, and, last but not least, reduce the power supply uncertainty.

Keywords: solar photovoltaic systems, large scale solar, airport, glare effects

Procedia PDF Downloads 213
6963 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
6962 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
6961 Secure Message Transmission Using Meaningful Shares

Authors: Ajish Sreedharan

Abstract:

Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.

Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image

Procedia PDF Downloads 455
6960 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 77
6959 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
6958 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 545
6957 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 383
6956 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities

Authors: Luana Parisi, Sohrab Donyavi

Abstract:

Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.

Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration

Procedia PDF Downloads 124
6955 Investigating the Subjective Factors Related to the Need for Psychological Help of the College Students

Authors: Ismail Ay

Abstract:

In this study, it is aimed to analyze the relations of the factors such as the learned resourcefulness, self-efficacy, self-regulation and subjective well-being which are thought to affect the needs of the university students for psychological help and to determine if the subjective well-being mediates other factors in the prediction of the needs of the university students for psychological help. The population of the study is formed of undergraduates who get education in 16 faculties in the central campus of the University of Atatürk in the spring term of 2012-2013 academic years. The sample of the study is formed of 1205 undergraduates (female=666, 55,3 %; male=539, 44,7 %; average of age =21,49; Sd=2,18) selected from the mentioned universe by convenience sampling method. “Need for Psychological Help Scale” has been developed as a part of the study to determine the needs for psychological help. “Short Self-Regulation Questionnaire” has been adapted into Turkish to determine the self-regulation skills. Apart from these, Rosenbaum’s Learned Resourcefulness Scale, General Self-Efficacy Scale and to determine subjective well-being; Satisfaction with Life Scale and Positive and Negative Affect Scale have been used within the study. SPSS 22.0 and LISREL 9.1 have been used in the analysis of the data. Pearson product-moment correlation, descriptive analysis, factor analysis and path analysis to test the research hypothesis has been used in the study. According to obtained data, the learned resourcefulness factor does not predict the subjective well-being; however, it highly predicts the self-regulation and self-efficacy factors. It has been determined that the self-regulation and self-efficacy factors predict the subjective well-being in a positive way and medium level, and subjective well-being mediates self-regulation and self-efficacy factors to predict the needs for psychological help. It was also determined that subjective well-being predicts the needs for psychological help in a negative way and fair level. All these results have been discussed in terms of the related theories and literature, and several suggestions have been made.

Keywords: need for psychological help, self-regulation, self-efficacy, learned resourcefulness, subjective well-being, Maslow, psychological needs

Procedia PDF Downloads 357
6954 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 110
6953 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 394
6952 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash

Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo

Abstract:

Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.

Keywords: composite, fly ash, full-scale, high volume

Procedia PDF Downloads 217
6951 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
6950 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
6949 Well-Being of Elderly with Nanonutrients

Authors: Naqvi Shraddha Rathi

Abstract:

During the aging process, physical frailty may develop. A more sedentary lifestyle, a reduction in metabolic cell mass and, consequently, lower energy expenditure and dietary intake are important contributors to the progression of frailty. A decline in intake is in turn associated with the risk of developing a suboptimal nutritional state or multiple micro nutrient deficiencies.The tantalizing potential of nanotechnology is to fabricate and combine nano scale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm.

Keywords: aging, cells frailty, micronutrients, biochemical reactivity

Procedia PDF Downloads 399
6948 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms

Authors: Saurav S. Rath, Birendra K. David

Abstract:

Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.

Keywords: computational fluid dynamics, morphology, quality-by-design, rheology

Procedia PDF Downloads 269
6947 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 209
6946 The Impact of Small-Scale Irrigation on the Income of Rural Households and Determinants of Its Adoption: Evidence from Dehana Woreda, Ethiopia

Authors: Wondmnew Derebe Yohannis

Abstract:

Farming irrigation plays a crucial role in rural development strategies, impacting both annual household income and livelihood. This research aims to evaluate the factors influencing irrigation participation and assess the impact of small-scale irrigation on rural households' annual income. The study collected data from 287 farmers in the Dahana district of northern Ethiopia. The research investigates the driving forces behind farmers' decisions to adopt small-scale irrigation and its effect on annual income gain. The findings reveal that several factors positively influence the probability of adoption, including access to credit, cultivated land size, livestock holding, extension contact, and the education level of the household head. Conversely, the distance to local markets and water schemes negatively affects the likelihood of adoption. To understand the differences in annual income between farm households that adopted irrigation and those that did not, a simultaneous equations model with endogenous switching regression is estimated. This accounts for the heterogeneity in the adoption decision and unobservable characteristics of farmers and their farms. The analysis compares the expected income gain under actual and counterfactual scenarios, considering whether the farm household adopted irrigation or not. The study reveals that the group of farm households that adopted irrigation has distinct characteristics compared to those that did not adopt it. Furthermore, the research demonstrates that the adoption of irrigation practices leads to an increase in annual income. Interestingly, the impact of small-scale irrigation on annual income is greater for the farm households that actually adopted irrigation compared to those in the counterfactual scenario where they did not adopt. Based on the findings, the researcher concludes that small-scale irrigation is a practical solution for meeting household financial needs in the study area. It is recommended that investments in small-scale irrigation continue to further improve the livelihoods of rural farming communities by enhancing annual income gains.

Keywords: small-scale irrigation, income, rural farm households, endogenous switching regression, user, non-user

Procedia PDF Downloads 63
6945 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa

Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce

Abstract:

In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.

Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security

Procedia PDF Downloads 425
6944 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 285