Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: plant classification

5069 Agronomic Manipulation in Cultivation Practices of Scented Rice: For Sustainable Crop Production

Authors: Damini Thawait, S. K. Dwivedi, Amit K. Patel, Samaptika Kar

Abstract:

The experiment was carried out at Raipur during season of 2012 to find out the optimum planting patterns for scented rice cultivation. The treatment (T2) planting of two to three seedlings hill-1 transplanted in the spacing of 25 cm from plant to plant and 25 cm from row to row recorded significantly good grain quality i.e. higher head rice recovery (41.41) along with higher gain length (8.05).

Keywords: rice, scented, quality, yield

Procedia PDF Downloads 419
5068 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 402
5067 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 262
5066 Solution to Increase the Produced Power in Micro-Hydro Power Plant

Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida

Abstract:

Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.

Keywords: energy, micro-hydro, water intake, fish ladder

Procedia PDF Downloads 234
5065 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 259
5064 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 8
5063 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 522
5062 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer

Authors: Munir Rusan

Abstract:

Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.

Keywords: composting, organic solid waste, soil, plant

Procedia PDF Downloads 82
5061 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 499
5060 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects

Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour

Abstract:

One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.

Keywords: engineering geology, rock mass classification, rock mechanic, tunnel

Procedia PDF Downloads 80
5059 Evaluation of Calendula officinalis L. Flower Dry Weight, Flower Diameter, and Number of Flower in Plant Variabilities under Effect of Compost and Nitrogen Different Levels in Four Harvest

Authors: Amin Rezazadeh, Parisa Farahpour, Arezoo Rezazadeh, Morteza Sam Deliri

Abstract:

In order to investigate the effects of nitrogen and compost different levels on qualitative and quantitative performance of Calendula officinalis L. herb, an experiment was carried out in the research field of Chalous Azad University in 2011-2012. The experiment was done in factorial form as a randomized complete block design, in three replicates. Treatments consisted of nitrogen and compost. Considered nitrogen levels consisted of N0=0, N1=50, N2=100 kg/ha and compost levels were including C0=0, C1=6, C2=12 ton/ha. Investigated characteristics consisted of flower dry weight, number of flowers in plant, flower diameter. The results showed, nitrogen and compost treatments had statistically significant influence (p ≤ 0.01) on studied characteristics. Flower dry weight, flower diameter and number of flower in plant characteristics has been studied in four harvest; as, the performance of these characteristics had increasing procedure from the first harvest up to the forth harvest; and, in the fourth harvest, it has reached to its` maximum level. As, up to the forth harvest, the maximum flower dry weight, flower diameter and number of flower in plant obtained by C1× N2 (C1=6 ton/ha compost and N2=100 kg/ha nitrogen) treatment.

Keywords: calendula, compost, nitrogen, flavonoid

Procedia PDF Downloads 386
5058 Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait

Authors: Mishari Khajah, Mohd. Elmuntasir Ahmed, Abdullah Al-Matouq, Farah Al-Ajeel, Fatemah Dashti, Ahmed Shishter

Abstract:

The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated.

Keywords: domestic wastewater, management, potable water, RO reject wastewater, Sulaibiya wastewater treatment plant

Procedia PDF Downloads 91
5057 Selection of Lead Mobilizing Bacteria from Contaminated Soils and Their Potential in Promoting Plant Growth through Plant Growth Promoting Activity

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad

Abstract:

Bacterial strains were isolated from contaminated soil collected from Rawalpindi and Islamabad. The strains were investigated for lead resistance and their effect on Pb solubility and PGPR activity. Incubation experiments were carried for inoculated and unoculated soil containing different levels of Pb. Results revealed that few stains (BTM-4, BTM-11, BTM-14) were able to tolerate Pb up to 600 mg L-1, whereas five strains (BTM-3, BTM-6, BTM-10, BTM-21 and BTM-24) showed significant increase in solubility of Pb when compared to all other strains and control. The CaCl2 extractable Pb was increased by 13.6, 6.8, 4.4 and 2.4 folds compared to un-inoculated control soil at increased soil Pb concentration (500, 1000, 1500 and 200 mg kg-1, respectively). The selected bacterial strains (11) were further investigated for plant growth promotion activity through PGPR assays including. Germination and root elongation assays were also conducted under elevated metal concentration in controlled conditions to elucidate the effects of microbial strains upon plant growth and development. The results showed that all the strains tested in this study, produced significantly varying concentrations of IAA, siderophores and gibberellic acid along with ability to phosphorus solubilization index (PSI). The results of germination and root elongation assay further confirmed the beneficial role of the microbial strains in elevating metal stress through PGPR activity. Among all tested strains, BTM-10 significantly improved plant growth. 1.3 and 2.7 folds increase in root and shoot length was observed when compared to control. Which may be attributed to presence of important plant growth promoting enzymes (IAA 74.6 μg/ml; GA 19.23 μg/ml; Sidrophore units 49% and PSI 1.3 cm). The outcome of this study indicates that these Pb tolerant and solubilizing strains may have the potential for plant growth promotion under metal stress and can be used as mediator when coupled with heavy metal hyperaccumulator plants for phytoremediation of Pb contaminated soil.

Keywords: Pb resistant bacteria, Pb mobilizing bacteria, Phytoextraction of Pb, PGPR activity of bacteria

Procedia PDF Downloads 219
5056 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 93
5055 Reliability-Centered Maintenance Application for the Development of Maintenance Strategy for a Cement Plant

Authors: Nabil Hameed Al-Farsi

Abstract:

This study’s main goal is to develop a model and a maintenance strategy for a cement factory called Arabian Cement Company, Rabigh Plant. The proposed work here depends on Reliability centric maintenance approach to develop a strategy and maintenance schedule that ensures increasing the reliability of the production system components, thus ensuring continuous productivity. The cost-effective maintenance of the plant’s dependability performance is the key goal of durability-based maintenance is. The cement plant consists of 7 important steps, so, developing a maintenance plan based on Reliability centric maintenance (RCM) method is made up of 10 steps accordingly starting from selecting units and data until performing and updating the model. The processing unit chosen for the analysis of this case is the calcinatory unit regarding model’s validation and the Travancore Titanium Products Ltd (TTP) using the claimed data history acquired from the maintenance department maintenance from the mentioned company. After applying the proposed model, the results of the maintenance simulation justified the plant's existing scheduled maintenance policy being reconsidered. Results represent the need for preventive maintenance for all Class A criticality equipment instead of the planned maintenance and the breakdown one for all other equipment depends on its criticality and an FMEA report. Consequently, the additional cost of preventive maintenance would be offset by the cost savings from breakdown maintenance for the remaining equipment.

Keywords: engineering, reliability, strategy, maintenance, failure modes, effects and criticality analysis (FMEA)

Procedia PDF Downloads 171
5054 Agro Morphological Characterization of Vicia faba L. Accessions in the Kingdom of Saudi Arabia

Authors: Zia Amjad, Salem Safar Alghamdi

Abstract:

This experiment was carried out at student educational farm College of Food and Agriculture, KSU, kingdom of Saudi Arabia; in order to characterize 154 Vicia faba, characterization, PCA, ago-morphological diversity. Icia faba L. accessions were based on ipove and ibpgr descriptors. 24 agro-morphological characters including 11 quantitative and 13 qualitative were observed for genetic variation. All the results were analyzed using multivariate analysis i.e. principle component analysis. First 6 principle components with eigenvalue greater than one; accounted for 72% of available Vicia faba genetic diversity. However, first three components revealed more than 10% of genetic diversity each i.e. 22.36%, 15.86%, and 10.89% respectively. PCA distributed the V. faba accessions into different groups based on their performance for the characters under observation. PC-1 which represented 22.36% of the genetic diversity was positively associated with stipule spot pigmentation, intensity of streaks, pod degree of curvature and to some extent with 100 seed weight. PC-2 covered 15.86 of the genetic diversity and showed positive association for average seed weight per plant, pod length, number of seeds per plant, 100 seed weight, stipule spot pigmentation, intensity of streaks (same as in PC-1), and to some extent for pod degree of curvature and number of pods per plant. PC-3 revealed 10.89% of genetic diversity and expressed positive association for number of pods per plant and number of leaflets per plant.

Keywords: Vicia faba, characterization, PCA, ago-morphological diversity

Procedia PDF Downloads 458
5053 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)

Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi

Abstract:

Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.

Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress

Procedia PDF Downloads 382
5052 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber

Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima

Abstract:

Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.

Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis

Procedia PDF Downloads 94
5051 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 180
5050 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 87
5049 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 163
5048 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
5047 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 178
5046 Phytochemical and Biological Evaluation of Derris scandens

Authors: Devarakonda Ramadevi, Dasari Rambabu, K. Suresh Babu, Battu Ganga Rao, Lakshmi Sirisha Kotikalapudi

Abstract:

The phytochemical and biological evaluation of the whole plant of Derris scandens is belonging to the family fabaceae. The dried plant of D.scandens was procured from the tirumala. The completely dried powder of the whole plant was taken and ground to a coarse powder which was then subjected to Soxhlet extraction with hexane and chloroform successively for 36 hrs. Chloroform extract was filtered and concentrated by using rotary evaporator an about 100g extract was obtained. The chloroform extract was subjected to column chromatographed over silicagel. From the column chromatography seven compounds were isolated named as osajin, scandinone, scandenone, 4,5,7-tri hydroxy biprenyl isoflavone, derris isoflavone-A, scandenin and isoscandinone. D.scandens resulting in the isolation of seven compounds in the plant was confirmed by spectral data (1H NMR, 13C NMR, ESI-MS and FTIR). The isolated compounds were screened for antioxidant activity, antidiabetic activity, α-glucosidase (inhibitory activity) and anti-bacterial activity. The isolated seven compounds were tested for α-glucosidase inhibitory activity and antioxidant activity. All the seven compounds showed good α-glucosidase inhibitory activity and moderate antioxidant activity.

Keywords: Derris scandens, phytochemical, antioxident, antidiabetic, antibacterial activity

Procedia PDF Downloads 316
5045 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
5044 Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions

Authors: Anas Cherqui, Audrey Pecourt, Manuella Catterou, Candice Mazoyon, Hervé Demailly, Vivien Sarazin, Frédéric Dubois, Jérôme Duclercq

Abstract:

Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms.

Keywords: Acyrthosiphon pisum, Pisum sativum, Sphingomonas, rhizobium, EPG, productivity

Procedia PDF Downloads 21
5043 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
5042 A Systematic Review of the Antimicrobial Effects of Different Plant Extracts (Quercus infectoria) as Possible Candidates in the Treatment of Infectious Diseases

Authors: Sajjad Jafari

Abstract:

Background and Aim: The use of herbal medicines has a long history. Today, due to the resistance of microorganisms to antibiotics and antimicrobial substances, herbal medicines have attracted attention due to their significant antimicrobial effects and low toxicity. This study aims to systematically review the antimicrobial effects of different plant extracts (Quercus infectoria) as possible candidates for treating infectious diseases. Material and Methods: The present study is a review study by searching reputable scientific databases such as PubMed, Google Scholar, Scopus, and Web of Science from 2000 to 2023 using the keywords Antimicrobial, Quercus infectoria, Medicinal herbal, Infectious diseases the latest information obtained. Results: In this study, 45 articles were found and reviewed. Quercus infectoria is a small tree native to Greece, Asia Minor, and Iran. Quercus is a plant genus in the family of Fagaceae. This species is generally known under the name ‘‘baloot” in Iran and is commonly used as a medicinal plant. The extracts used included water, hydro-alcoholic, ethanol, methanol. This plant had high inhibition activity and a lethal effect on gram-positive and gram-negative bacteria of ATCC strains, hospital, and resistant strains. Therefore, in addition to antibacterial effects, antiparasitic and antifungal effects. The seed of the plant was the most used and the most effective antimicrobial extract among the ethanol and methanol extracts. Conclusion: The findings of this study suggest that Quercus infectoria has significant antimicrobial effects against a wide range of microorganisms. This makes it a potential candidate for the development of new antimicrobial drugs. Further research is needed to confirm the efficacy and safety of Quercus infectoria in clinical trials.

Keywords: antimicrobial, Quercus infectoria, medicinal herbal, infectious diseases

Procedia PDF Downloads 96
5041 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.

Authors: Grecco M. Ante, Princess Rochelle O. Gan

Abstract:

Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.

Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite

Procedia PDF Downloads 465
5040 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517