Search results for: offshore wind turbine
1154 Distribution of Synechococcus and Prochlorococcus in Southeastern Coast of Peninsular Malaysia
Authors: Roswati Md. Amin, Nurul Asmera Mudiman, Muhammad Faisal Abd. Rahman, Md-Suffian Idris, Noor Hazwani Mohd Azmi
Abstract:
Distribution of picophytoplankton from two genera, Synechococcus and Prochlorococcus at the surface water (0.5m) were observed from coastal to offshore area of the southeastern coast of Peninsular Malaysia, for a six day cruise in August 2014 during SouthWest monsoon. The picophytoplankton was divided into two different size fractions (0.7-2.7μm and <0.7 μm) by filtering through GF/D (2.7 μm) and GF/F (0.7 μm) filter papers and counted by using flow cytometer. Synechococcus and Prochlorococcus contribute higher at 0.7-2.7μm size range (ca. 90% and 95%, respectively) compared to <0.7 μm (ca. 10% and 5%, respectively). Synechococcus (>52%) dominated the total picophytoplankton compared to Prochlorococcus (<26%) for both size fractions in southeastern coast of Peninsular Malaysia. Total density (<2.7 μm) of Synechococcus was ranging between 1.72 x104 and 12.57 x104 cells ml-1, while Prochlorococcus varied from 1.50 x104 to 8.62 x104. Both Synechococcus and Prochlorococcus abundance showed a decreasing trend from coastal to offshore.Keywords: Peninsular Malaysia, prochlorococcus, South China Sea, synechococcus
Procedia PDF Downloads 3161153 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas
Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang
Abstract:
An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.Keywords: axial capacity, cyclic loading, pile ageing, shallow gas
Procedia PDF Downloads 3451152 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency
Authors: Essam Amerian
Abstract:
The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency
Procedia PDF Downloads 801151 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 711150 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems
Authors: Amirhossein Khazali, Mohsen Kalantar
Abstract:
Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation
Procedia PDF Downloads 5761149 Application of PV/Wind-Based Green Energy to Power Cellular Base Station
Authors: Francis Okodede, Edafe Lucky Okotie
Abstract:
Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station.Keywords: base station, energy storage, green energy, rotor efficiency, solar energy, wind energy
Procedia PDF Downloads 991148 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 1881147 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil
Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus
Abstract:
In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.Keywords: onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation
Procedia PDF Downloads 1541146 Nonlinear Dynamic Response of Helical Gear with Torque-Limiter
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
This paper investigates the nonlinear dynamic response of a mechanical torque limiter which is used to protect drive parts from overload (helical transmission gears). The system is driven by four excitations: two external excitations (aerodynamics torque and force) and two internal excitations (two mesh stiffness fluctuations). In this work, we develop a dynamic model with lumped components and 28 degrees of freedom. We use the Runge Kutta step-by-step time integration numerical algorithm to solve the equations of motion obtained by Lagrange formalism. The numerical results have allowed us to identify the sources of vibration in the wind turbine. Also, they are useful to help the designer to make the right design and correctly choose the times for maintenance.Keywords: two-stage helical gear, lumped model, dynamic response, torque-limiter
Procedia PDF Downloads 3531145 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 6011144 Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer
Authors: Noraishah Othman, Siti K. Kamarudin, Norinsan K. Othman, Mohd S. Takriff, Masli I. Rosli, Engku M. Fahmi, Mior A. Khusaini
Abstract:
The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B.Keywords: hybrid impeller, residence time distribution (RTD), radiotracer experiments, RTD model
Procedia PDF Downloads 3581143 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes
Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi
Abstract:
With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.Keywords: energy harvesting, piezoelectric, flutter, wind tunnel
Procedia PDF Downloads 651142 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade
Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour
Abstract:
The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation
Procedia PDF Downloads 3631141 Establishing Taiwan's Marine Space Planning System
Authors: Wen-Yan Chiau
Abstract:
Taiwan passed the 'Basic Ocean Act' in November 2019, and in accordance with Article 4 of its provisions, the government should draft a decree on ocean space planning (MSP). In the past few years, although Taiwan has passed the 'Coastal Zone Management Act' and the 'Spatial Planning Act', in the face of multiple use of marine areas, it still lacks a comprehensive marine area use blueprint and a fundamental mechanism for multi-purpose use planning management. In particular, Taiwan's active development of offshore wind power is facing this problem, and it is impossible to fully reconcile the use of each domain and the public welfare through a holistic system, highlighting the urgency of the establishment of MSP system. Therefore, this article will review relevant Taiwan laws and regulations, refer to important international initiatives and experiences, and participate in the exchange of practical experience in international conference(s), and propose adequate framework, principles, procedures, and promotion strategies on MSP. Possible solutions to promote sustainable and wise use in Taiwan's waters will also be suggested for comments.Keywords: basic ocean act, coastal zone management act, marine spatial planning, spatial planning act, Taiwan
Procedia PDF Downloads 1341140 A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses
Authors: Somayyeh Karimiyan
Abstract:
To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation.Keywords: jacket structure, seismic evaluation, push-over and nonlinear time history analyses, critical members
Procedia PDF Downloads 2811139 Approaches of Flight Level Selection for an Unmanned Aerial Vehicle Round-Trip in Order to Reach Best Range Using Changes in Flight Level Winds
Authors: Dmitry Fedoseyev
Abstract:
The ultimate success of unmanned aerial vehicles (UAVs) depends largely on the effective control of their flight, especially in variable wind conditions. This paper investigates different approaches to selecting the optimal flight level to maximize the range of UAVs. We propose to consider methods based on mathematical models of atmospheric conditions, as well as the use of sensor data and machine learning algorithms to automatically optimize the flight level in real-time. The proposed approaches promise to improve the efficiency and range of UAVs in various wind conditions, which may have significant implications for the application of these systems in various fields, including geodesy, environmental surveillance, and search and rescue operations.Keywords: drone, UAV, flight trajectory, wind-searching, efficiency
Procedia PDF Downloads 671138 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm
Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz
Abstract:
Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations
Procedia PDF Downloads 1351137 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer
Authors: Bhavesh N. Bhatt, Zozimus D. Labana
Abstract:
This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel
Procedia PDF Downloads 3361136 Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft
Authors: Kartik Gupta, Umar Khan, Mayur Parab, Dhiraj Chaudhari, Afzal Ansari
Abstract:
The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD.Keywords: wind tunnel testing, CFD, stabilizer, stabilator
Procedia PDF Downloads 621135 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea
Authors: Marda Vidrianto, Tania Surya Utami
Abstract:
Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.Keywords: advance technology, energy efficiency, ESP, mature field, production rate
Procedia PDF Downloads 3421134 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics
Authors: Varun K, Pramod B. Balareddy
Abstract:
Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient
Procedia PDF Downloads 2581133 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines
Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar
Abstract:
River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.Keywords: micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power
Procedia PDF Downloads 3581132 Mitigation of Offshore Piling Noise Effects on Marine Mammals
Authors: Waled A. Dawoud, Abdelazim M. Negm, Nasser M. Saleh
Abstract:
Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques.Keywords: offshore pile driving, sound propagation models, noise effects on marine mammals, Underwater noise mitigation
Procedia PDF Downloads 5461131 Structural Analysis of Hole-Type Plate for Weight Lightening of Road Sign
Authors: Joon-Yeop Na, Sang-Keun Baik, Kyu-Soo Chong
Abstract:
Road sign sizes are related to their support and foundation, and the large-scale support that is generally installed at roadsides can cause inconvenience to pedestrians and damage the urban landscape. The most influential factor in determining the support and foundation of road signs is the wind load. In this study, we introduce a hole-type road sign to analyze its effects on reducing wind load. A hole-type road sign reduces the drag coefficient that is applied when considering the air and fluid resistance of a plate when the wind pressure is calculated, thus serving as an effective option for lightening the weights of road sign structures. A hole-type road sign is punctured with a perforator. Furthermore, the size of the holes and their distance is determined considering the damage to characters, the poor performance of reflective sheets, and legibility. For the calculation of the optimal specification of a hole-type road sign, we undertook a theoretical examination for reducing the wind loads on hole-type road signs, and analyzed the bending and reflectivity of sample road sign plates. The analytic results confirmed that a hole-type road sign sample that contains holes of 6 mm in diameter with a distance of 18 mm between the holes shows reflectivity closest to that of existing road signs; moreover, the average bending moment resulted in a reduction of 4.24%, and the support’s diameter is reduced by 40.2%.Keywords: hole type, road sign, weight lightening, wind load
Procedia PDF Downloads 5471130 Simulation of Forest Fire Using Wireless Sensor Network
Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal
Abstract:
In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.Keywords: forest fire monitor, humidity, wind direction, wireless sensor network
Procedia PDF Downloads 4541129 Life Locked Up in Immigration Detention: An Exploratory Study of Education in Australian Refugee Prisons
Authors: Carly Hawkins
Abstract:
Forced migration is at unprecedented levels globally, and many countries have implemented harsh policies regarding people seeking asylum. Australia legislates one of the harshest and most controversial responses in the world, sending any asylum seeker arriving by boat to indefinite offshore immigration detention. This includes children, families and unaccompanied minors. Asylum seekers and refugees are detained indefinitely by the Australian government in the Pacific Island countries of Papua New Guinea and Nauru. Global research on the impact of immigration detention has primarily focused on mental health and psychological concerns for both adults and children. Research into Australian immigration detention has largely overlooked the schooling and education of children detained in Nauru, despite refugee children spending more than five years in detention, a significant portion of a child’s life. This research focused on the experience of education for children detained offshore in Nauru from 2013-2019. 21 qualitative interviews were conducted with children, parents and service providers between 2021-2022. Interviews explored experiences of schooling, power structures, and barriers and support to education. Findings show that a lack of belonging and lack of agency negatively affected school engagement. A sense of hopelessness and uncertainty also affected their motivation to attend school, with many children missing school for months and years. The research indicates that Australia’s current policy of offshore detention has been detrimental to children’s educational experiences.Keywords: asylum seeker, children, education, immigration detention, policy, refugee, school
Procedia PDF Downloads 771128 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings
Procedia PDF Downloads 3491127 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications
Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino
Abstract:
The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses
Procedia PDF Downloads 1811126 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 731125 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level
Authors: Ahmad Rouhani
Abstract:
Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.Keywords: feasibility, hybrid energy system, Iran, renewable energy
Procedia PDF Downloads 485