Search results for: moving bed biofilm reactor (MBBR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1851

Search results for: moving bed biofilm reactor (MBBR)

1311 Placelessness and the Subversive Tactics of Mobility in Ernest Hemingway and Jabra Ibrahim Jabra

Authors: Ahmad Qabaha

Abstract:

This paper teases out the ways in which the constructs of placelessness and mobility are articulated in modern exilic Palestinian literature and American expatriate writing. The mode of placelessness embodied by the characters of each of my two authors (expatriation in Paris Montparnasse for Hemingway's characters and involuntary exile in Europe for Jabra's) will be elicited from the orientations of their mobility. This paper argues that the proclivity of Hemingway's characters for centrifugal motion (moving away from the centre) is a strategy to increase their sense of freedom that space (expatriation), rather than place, secures. By contrast, the movement of Jabra's characters is centripetal (moving or tending to move towards the centre). It echoes his Palestinian characters' recurrent futile attempts to return to Palestine, and it expresses their resistance to the lures of exile. This paper asserts that the involuntarily exiled character (the Palestinian in this case) is a figure obsessed with and ache for a place, roots and 'a dwelling' from which he was uprooted - a place that defines his authentic existence and frames his understanding of the world in Martin Heidegger's, Simone Weil's and Gaston Bachelard's senses. In parallel, this paper explains that the expatriate character (the American in this case) views place as confining, restrictive and disagreeable, while mobility as a figure of freedom, resistance, wealth, self-fashioning and understanding/inhabiting the world. Place in this sense is associated with past, tradition, ideology, existence and being. Mobility is equivalent with modernity, progression, innovation, self-fashioning and freedom.

Keywords: American expatriate literature, exilic Palestinian literature, mobility, place, placelessness

Procedia PDF Downloads 415
1310 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance

Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao

Abstract:

An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.

Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration

Procedia PDF Downloads 138
1309 Understanding Relationships between Listening to Music and Pronunciation Learning: An Investigation Based upon Japanese EFL Learners' Self-Evaluation

Authors: Hirokatsu Kawashima

Abstract:

In an attempt to elucidate relationships between listening to music and pronunciation learning, a classroom-based investigation was conducted with Japanese EFL learners (n=45). The subjects were instructed to listen to English songs they liked on YouTube, especially paying attention to phonologically similar vowel and consonant minimal pair words (e.g., live and leave). This kind of activity, which included taking notes, was regularly carried out in the classroom, and the same kind of task was given to the subjects as homework in order to reinforce the in-class activity. The duration of these activities was eight weeks, after which the program was evaluated on a 9-point scale (1: the lowest and 9: the highest) by learners’ self-evaluation. The main questions for this evaluation included 1) how good the learners had been at pronouncing vowel and consonant minimal pair words originally, 2) how often they had listened to songs good for pronouncing vowel and consonant minimal pair words, 3) how frequently they had moved their mouths to vowel and consonant minimal pair words of English songs, and 4) how much they thought the program would support and enhance their pronunciation learning of phonologically similar vowel and consonant minimal pair words. It has been found, for example, A) that the evaluation of this program is by no means low (Mean: 6.51 and SD: 1.23), suggesting that listening to music may support and enhance pronunciation learning, and B) that listening to consonant minimal pair words in English songs and moving the mouth to them are more related to the program’s evaluation (r =.69, p=.00 and r =.55, p=.00, respectively) than listening to vowel minimal pair words in English songs and moving the mouth to them (r =.45, p=.00 and r =.39, p=.01, respectively).

Keywords: minimal pair, music, pronunciation, song

Procedia PDF Downloads 292
1308 Performance of a Lytic Bacteriophage Cocktail against Pseudomonas aeruginosa in Conditions That Simulate the Cystic Fibrosis Lung Environment

Authors: Isaac Martin, Abigail Lark, Sandra Morales, Eric W. Alton, Jane C. Davies

Abstract:

Objectives: The cystic fibrosis (CF) lung is a unique microbiological niche, wherein harmful bacteria persist for many years despite antibiotic therapy. Pseudomonas aeruginosa (Pa), the major culprit leading to lung decline and increased mortality, thrives in the lungs of patients with CF due to several factors that have been linked with poor antibiotic performance. Our group is investigating alternative therapies including bacteriophage cocktails with which we have previously demonstrated efficacy against planktonic organisms. In this study, we explored the effects of a 4-phage cocktail on Pa grown in two different conditions, intended to mirror the CF lung: a) alongside standard antibiotic treatment in pre-formed biofilms (structures formed by Pa-secreted exopolysaccharides which provide both physical and cell division barriers to antimicrobials and host defenses and b) in an acidic environment postulated to be present in the CF airway due both to the primary defect in bicarbonate secretion and secondary effects of inflammation. Methods: 16 Pa strains from CF patients at the Royal Brompton Hospital were selected based on sensitivity to a) ceftazidime/ tobramycin and b) the phage cocktail in a conventional plaque assay. To assess efficacy of phage in biofilms, 96 well plates with Pa (5x10⁷ CFU/ ml) were incubated in static conditions, allowing adherent bacterial colonies to form for 24 hr. Ceftazidime and tobramycin (both at 2 × MIC) were added, +/- bacteriophage (4x10⁸ PFU/mL) for a further 24 hr. Cell viability and biomass were estimated using fluorescent resazurin and crystal violet assays, respectively. To evaluate the effect of pH, strains were grown planktonically in shaking 96 well plates at pH 6.0, 6.6, 7.0 and 7.5 with tobramycin or phage, at varying concentrations. Cell viability was quantified by fluorescent resazurin assay. Results: For the biofilm assay, treatment groups were compared with untreated controls and expressed as percent reduction in cell viability and biomass. Addition of the 4-phage cocktail resulted in a 1.3-fold reduction in cell viability and 1.7-fold reduction in biomass (p < 0.001) when compared to standard antibiotic treatment alone. Notably, there was a 50 ± 15% reduction in cell viability and 60 ± 12% reduction in biomass (95% CI) for the 4 biofilms demonstrating the most resistance to antibiotic treatment. 83% of strains tested (n=6) showed decreased bacterial killing by tobramycin at acidic pHs (p < 0.01). However, 25% of strains (n=12) showed improved phage killing at acidic pHs (p < 0.05), with none showing the pattern of reduced efficacy at acidic pH demonstrated by tobramycin. Conclusion: The 4-phage anti-Pa cocktail tested against Pa performs well in pre-formed biofilms and in acidic environments; two conditions intended to mimic the CF lung. To our knowledge, these are the first data looking at the effects of subtle pH changes on phage-mediated bacterial killing in the context of Pa infection. These findings contribute to a growing body of evidence supporting the use of nebulised lytic bacteriophage as a treatment in the context of lung infection.

Keywords: biofilm, cystic fibrosis, pH, Pseudomonas aeruginosa, lytic bacteriophage

Procedia PDF Downloads 155
1307 Moving from Practice to Theory

Authors: Maria Lina Garrido

Abstract:

This paper aims to reflect upon instruction in English classes with the specific purpose of reading comprehension development, having as its paradigm the considerations presented by William Grabe, in his book Reading in a Second Language: Moving from theory to practice. His concerns regarding the connection between research findings and instructional practices have stimulated the present author to re-evaluate both her long practice as an English reading teacher and as the author of two reading textbooks for graduate students. Elements of the reading process such as linguistic issues, prior knowledge, reading strategies, critical evaluation, and motivation are the main foci of this analysis as far as the activities developed in the classroom are concerned. The experience with university candidates on postgraduate courses with different levels of English knowledge in Bahia, Brazil, has definitely demanded certain adjustments to this author`s classroom setting. Word recognition based on cognates, for example, has been emphasized given the fact that academic texts use many Latin words which have the same roots as the Brazilian Portuguese lexicon. Concerning syntactic parsing, the tenses/verbal aspects, modality and linking words are included in the curriculum, but not with the same depth as the general English curricula. Reading strategies, another essential predictor for developing reading skills, have been largely stimulated in L2 classes in order to compensate for a lack of the appropriate knowledge of the foreign language. This paper presents results that demonstrate that this author`s teaching practice is compatible with the implications and instruction concerning the reading process outlined by Grabe, however, it admits that each class demands specific instructions to meet the needs of that particular group.

Keywords: classroom practice, instructional activities, reading comprehension, reading skills

Procedia PDF Downloads 427
1306 Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy

Authors: Marta Błażkiewicz, Adam Konefał

Abstract:

Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted.

Keywords: BNCT, virtual models, neutron sources, monte carlo, GEANT4, neutron activation detectors, gamma spectroscopy

Procedia PDF Downloads 163
1305 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 106
1304 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources

Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou

Abstract:

The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.

Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test

Procedia PDF Downloads 75
1303 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit

Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini

Abstract:

Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.

Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift

Procedia PDF Downloads 270
1302 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 259
1301 Radiation Stability of Structural Steel in the Presence of Hydrogen

Authors: E. A. Krasikov

Abstract:

As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins. In essence, the reactor pressure vessel (RPV) is the key structural component determining the NPP lifetime. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance and development of light-water reactors. Extensive cracking leading to failure of the cladding was found after 13000 net hours of operation in JPDR (Japan Power Demonstration Reactor). Some of the cracks have reached the base metal and further penetrated into the RPV in the form of localized corrosion. Failures of reactor internal components in both boiling water reactors and pressurized water reactors have increased after the accumulation of relatively high neutron fluences (5´1020 cm–2, E>0,5MeV). Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant. At present when notable progress in plasma physics has been obtained practical energy utilization from fusion reactors (FR) is determined by the state of material science problems. The last includes not only the routine problems of nuclear engineering but also a number of entirely new problems connected with extreme conditions of materials operation – irradiation environment, hydrogenation, thermocycling, etc. Limiting data suggest that the combined effect of these factors is more severe than any one of them alone. To clarify the possible influence of the in-service synergistic phenomena on the FR structural materials properties we have studied hydrogen-irradiated steel interaction including alternating hydrogenation and heat treatment (annealing). Available information indicates that the life of the first wall could be expanded by means of periodic in-place annealing. The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the steel mechanical properties. Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of irradiated materials.

Keywords: hydrogen, radiation, stability, structural steel

Procedia PDF Downloads 241
1300 Moving Target Defense against Various Attack Models in Time Sensitive Networks

Authors: Johannes Günther

Abstract:

Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.

Keywords: network security, time sensitive networking, moving target defense, cyber security

Procedia PDF Downloads 46
1299 Crystalline Structure of Starch Based Nano Composites

Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli

Abstract:

In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Keywords: biofilm, cellulose, nanocomposite, starch

Procedia PDF Downloads 386
1298 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 126
1297 Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons

Authors: I. C. Cho, W. H. Wen, H. Y. Tsai, T. C. Chao, C. J. Tung

Abstract:

Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies.

Keywords: TEPC, lineal energy, microdosimetry, radiation quality

Procedia PDF Downloads 450
1296 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater

Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige

Abstract:

This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.

Keywords: granular sludge, PAOs, P recovery, SBR

Procedia PDF Downloads 456
1295 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites

Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying

Abstract:

Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.

Keywords: butene, catalytic cracking, HZSM-5, modification

Procedia PDF Downloads 363
1294 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 135
1293 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 387
1292 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space

Procedia PDF Downloads 218
1291 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 23
1290 Social Status and Role of Women among the Khasi Tribe of Meghalaya

Authors: Jeffreyson Wahlang

Abstract:

The aim of this paper is to analyse the changes in the social status and role of Khasi women with the advent of modernisation and globalisation. Since all societies inevitably undergo social change, this paper will attempt to enquire about the path and direction to which women in Khasi Hills, Meghalaya is moving.

Keywords: status, role, women, Khasi Matriliny, gender

Procedia PDF Downloads 241
1289 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company

Authors: Korpapa Srisamai, Pawee Siriruk

Abstract:

The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.

Keywords: demand forecast, reorder point, lost sale, dead stock

Procedia PDF Downloads 89
1288 Indigo Dye Wastewater Treatment by Fenton Oxidation

Authors: Anurak Khrueakham, Tassanee Chanphuthin

Abstract:

Indigo is a well-known natural blue dye that is used hither to even though synthetic ones are commercially available. The removal of indigo from effluents is difficult due to its resistance towards biodegradation which causes an aquatic environment effect. Fenton process is a reaction between hydrogen peroxide H2O2 and Fe2+ to generate •OH (highly reactive oxidant (E◦= 2.8 V)). Additionally, •OH is non-selective oxidant which is capable of destroying wide range of organic pollutants in water and wastewater. The aims of this research were to investigate the effect of H2O2, Fe2+ and pH on indigo wastewater oxidation by Fenton process. A liter reactor was operated in all experiments. The batch reactor was prepared by filling 1 liter of indigo wastewater. The pH was adjusted to the desired value; then, FeSO4 at predetermined amount was added. Finally, H2O2 was immediately added to start the Fenton’s reaction. The Fenton oxidation of indigo wastewater was operated for 60 minutes. Residual H2O2 was analyzed using titanium oxalate method. The Fe2+ concentration was determined by phenanthroline method. COD was determined using closed-reflux titrimetric method to indicate the removal efficiency. The results showed that at pH 2 increasing the initial ferrous concentration from 0.1 mM to 1 mM enhanced the indigo removal from 36% to 59%. Fenton reaction was rapidly due to the high generation rate of •OH. The degradation of indigo increased with increasing pH up to pH 3. This can be explained that the scavenging effect of the •OH by H+ in the condition of low pH is severe to form an oxonium ion, resulting in decrease the production of •OH and lower the decolorization efficiency of indigo. Increasing the initial H2O2 concentration from 5 mM to 20 mM could enhance the decolorization. The COD removal was increased from 35% to 65% with increasing H2O2 concentration from 5 mM to 20 mM. The generations of •OH were promoted by the increase of initial H2O2 concentration. However, the higher concentration of H2O2 resulted in the reduction of COD removal efficiency. The initial ferrous concentrations were studied in the range of 0.05-15.0 mM. The results found that the COD removals increased with increasing ferrous concentrations. The COD removals were increased from 32% to 65% when increase the ferrous concentration from 0.5 mM to 10.0 mM. However, the COD removal did not significantly change at higher 10.0 mM. This is because •OH yielding was lower level of oxidation, therefore, the COD removals were not improved. According to the studies, the Fenton’s reagents were important factors for COD removal by Fenton process. The optimum condition for COD removal of indigo dye wastewater was 10.0 mM of ferrous, 20 mM of H2O2 and at pH 3.

Keywords: indigo dye, fenton oxidation, wastewater treatment, advanced oxidation processes

Procedia PDF Downloads 373
1287 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 424
1286 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 23
1285 Anaerobic Digestion of Organic Wastes for Biogas Production

Authors: Ayhan Varol, Aysenur Ugurlu

Abstract:

Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%.

Keywords: biogas production, organic wastes, biomethane, anaerobic digestion

Procedia PDF Downloads 254
1284 Nitrification and Denitrification Kinetic Parameters of a Mature Sanitary Landfill Leachate

Authors: Tânia F. C. V. Silva, Eloísa S. S. Vieira, João Pinto da Costa, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

Sanitary landfill leachates are characterized as a complex mixture of diverse organic and inorganic contaminants, which are usually removed by combining different treatment processes. Due to its simplicity, reliability, high cost-effectiveness and high nitrogen content (mostly under the ammonium form) inherent in this type of effluent, the activated sludge biological process is almost always applied in leachate treatment plants (LTPs). The purpose of this work is to assess the effect of the main nitrification and denitrification variables on the nitrogen's biological removal, from mature leachates. The leachate samples were collected after an aerated lagoon, at a LTP nearby Porto, presenting a high amount of dissolved organic carbon (1.0-1.3 g DOC/L) and ammonium nitrogen (1.1-1.7 g NH4+-N/L). The experiments were carried out in a 1-L lab-scale batch reactor, equipped with a pH, temperature and dissolved oxygen (DO) control system, in order to determine the reaction kinetic constants at unchanging conditions. The nitrification reaction rate was evaluated while varying the (i) operating temperature (15, 20, 25 and 30ºC), (ii) DO concentration interval (0.5-1.0, 1.0-2.0 and 2.0-4.0 mg/L) and (iii) solution pH (not controlled, 7.5-8.5 and 6.5-7.5). At the beginning of most assays, it was verified that the ammonium stripping occurred simultaneously to the nitrification, reaching up to 37% removal of total dissolved nitrogen. The denitrification kinetic constants and the methanol consumptions were calculated for different values of (i) volatile suspended solids (VSS) content (25, 50 and 100 mL of centrifuged sludge in 1 L solution), (ii) pH interval (6.5-7.0, 7.5-8.0 and 8.5-9.0) and (iii) temperature (15, 20, 25 and 30ºC), using effluent previously nitrified. The maximum nitrification rate obtained was 38±2 mg NH4+-N/h/g VSS (25ºC, 0.5-1.0 mg O2/L, pH not controlled), consuming 4.4±0.3 mg CaCO3/mg NH4+-N. The highest denitrification rate achieved was 19±1 mg (NO2--N+NO3--N)/h/g VSS (30ºC, 50 mL of sludge and pH between 7.5 and 8.0), with a C/N consumption ratio of 1.1±0.1 mg CH3OH/mg (NO2--N+NO3--N) and an overall alkalinity production of 3.7±0.3 mg CaCO3/mg (NO2--N+NO3--N). The denitrification process showed to be sensitive to all studied parameters, while the nitrification reaction did not suffered significant change when DO content was changed.

Keywords: mature sanitary landfill leachate, nitrogen removal, nitrification and denitrification parameters, lab-scale activated sludge biological reactor

Procedia PDF Downloads 250
1283 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 85
1282 Further Investigation of Core Degradation Using Quench Test Facility Results

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents an application of the ASTEC V2r3p3 computer code for simulation of QUENCH-12 experiment. The test has been performed to investigate the behavior of VVER type of fuel assemblies during severe accident conditions. In the performed analyses it has been assessed the mass of generated hydrogen during the experiment flooding of overheated core. The comparison of ASTECv2r3p3 calculated results with measured test data shows good agreement.

Keywords: hydrogen production, VVER, QUENCH facility, severe accident, reactor core

Procedia PDF Downloads 209