Search results for: marketing analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1403

Search results for: marketing analytics

863 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 33
862 The Analysis of the Effect of Brand Image on Creating Brand Loyalty with the Structural Equation Model: A Research Study on the Sports Equipment Brand Users

Authors: Murat Erdoğdu, Murat Koçyiğit

Abstract:

Brand image and brand loyalty are among the most important relational marketing elements for brand owners to be able to set up long – term relationships with their customers and to maintain these relationships. Brand owners improve their brand images with the positive perceptions remaining in the consumers’ minds. In addition, they try to find the customers that are both emotionally and behaviourally faithful to themselves in order to set up long – term relationships. Therefore, the aim of this study is to analyse the effects of the brand image that has a very important role among relational marketing elements on the brand loyalty in terms of the variables such as the perceived value, the trust in brand and the brand satisfaction. In this context, a conceptual model was created to determine the effect of the brand image on the brand loyalty thanks to the Structural Equation Model (SEM). According to this aim and this model, the study was carried out in the scope of the data collected through the questionnaires in Konya with the method of convenience sampling. The results of the research showed that the brand image has positive significant effects on the perceived value and the trust in brand and that the trust in brand has positive significant effects on the brand satisfaction, and that the brand satisfaction has positive significant effects on the brand loyalty. Thus, the hypotheses that the brand image has direct effects on the perceived value and the trust in brand and that the trust in brand has direct effects on the brand satisfaction and that the brand satisfaction has direct effects on the brand loyalty were supported. In addition, the findings about whether the perceived value has a significant effect on the brand satisfaction were also acquired.

Keywords: brand image, brand loyalty, perceived value, satisfaction, trust

Procedia PDF Downloads 442
861 IoT and Edge Computing for Smog Management and Policy Making

Authors: Farhan Siddiqui

Abstract:

The increasingly complex challenges related to smog require the latest real-time monitoring and mitigation solutions. This paper describes a distributed IoT-edge architecture to improve smog detection, analysis, and policymaking. IoT sensors collect information related to critical air quality indicators while edge nodes perform local analytics with low latency for swift intervention. The system uses predictive algorithms to generate actionable insights to inform adaptive urban management strategies. Field implementations show dramatic improvements, including a 45 percent reduction in processing latency and improved predictive accuracy (R² = 0.92). These results show the potential of the framework to transform urban environmental management and policy making.

Keywords: Internet of Things, edge computing, Smog management, air quality, policy making

Procedia PDF Downloads 19
860 A Design Framework for an Open Market Platform of Enriched Card-Based Transactional Data for Big Data Analytics and Open Banking

Authors: Trevor Toy, Josef Langerman

Abstract:

Around a quarter of the world’s data is generated by financial with an estimated 708.5 billion global non-cash transactions reached between 2018 and. And with Open Banking still a rapidly developing concept within the financial industry, there is an opportunity to create a secure mechanism for connecting its stakeholders to openly, legitimately and consensually share the data required to enable it. Integration and data sharing of anonymised transactional data are still operated in silos and centralised between the large corporate entities in the ecosystem that have the resources to do so. Smaller fintechs generating data and businesses looking to consume data are largely excluded from the process. Therefore there is a growing demand for accessible transactional data for analytical purposes and also to support the rapid global adoption of Open Banking. The following research has provided a solution framework that aims to provide a secure decentralised marketplace for 1.) data providers to list their transactional data, 2.) data consumers to find and access that data, and 3.) data subjects (the individuals making the transactions that generate the data) to manage and sell the data that relates to themselves. The platform also provides an integrated system for downstream transactional-related data from merchants, enriching the data product available to build a comprehensive view of a data subject’s spending habits. A robust and sustainable data market can be developed by providing a more accessible mechanism for data producers to monetise their data investments and encouraging data subjects to share their data through the same financial incentives. At the centre of the platform is the market mechanism that connects the data providers and their data subjects to the data consumers. This core component of the platform is developed on a decentralised blockchain contract with a market layer that manages transaction, user, pricing, payment, tagging, contract, control, and lineage features that pertain to the user interactions on the platform. One of the platform’s key features is enabling the participation and management of personal data by the individuals from whom the data is being generated. This framework developed a proof-of-concept on the Etheruem blockchain base where an individual can securely manage access to their own personal data and that individual’s identifiable relationship to the card-based transaction data provided by financial institutions. This gives data consumers access to a complete view of transactional spending behaviour in correlation to key demographic information. This platform solution can ultimately support the growth, prosperity, and development of economies, businesses, communities, and individuals by providing accessible and relevant transactional data for big data analytics and open banking.

Keywords: big data markets, open banking, blockchain, personal data management

Procedia PDF Downloads 76
859 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company

Authors: Ju Shan Lin

Abstract:

The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.

Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry

Procedia PDF Downloads 245
858 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 172
857 Inferring Cognitive Skill in Concept Space

Authors: Rania A. Aboalela, Javed I. Khan

Abstract:

This research presents a learning assessment theory of Cognitive Skill in Concept Space (CS2) to measure the assessed knowledge in terms of cognitive skill levels of the concepts. The cognitive skill levels refer to levels such as if a student has acquired the state at the level of understanding, or applying, or analyzing, etc. The theory is comprised of three constructions: Graph paradigm of a semantic/ ontological scheme, the concept states of the theory and the assessment analytics which is the process to estimate the sets of concept state at a certain skill level. Concept state means if a student has already learned, or is ready to learn, or is not ready to learn a certain skill level. The experiment is conducted to prove the validation of the theory CS2.

Keywords: cognitive skill levels, concept states, concept space, knowledge assessment theory

Procedia PDF Downloads 328
856 A Case Study on the Impact of Technology Readiness in a Department of Clinical Nurses

Authors: Julie Delany

Abstract:

To thrive in today’s digital climate, it is vital that organisations adopt new technology and prepare for rising digital trends. This proves more difficult in government where, traditionally, people lack change readiness. While individuals may have a desire to work smarter, this does not necessarily mean embracing technology. This paper discusses the rollout of an application into a small department of highly experienced nurses. The goal was to both streamline the department's workflow and provide a platform for gathering essential business metrics. The biggest challenges were adoption and motivating the nurses to change their routines and learn new computer skills. Two-thirds struggled with the change, and as a result, some jeopardised the validity of the business metrics. In conclusion, there are lessons learned and recommendations for similar projects.

Keywords: change ready, information technology, end-user, iterative method, rollout plan, data analytics

Procedia PDF Downloads 147
855 An Empirical Enquiry on Cultural Influence and Purchase Decision for Durable Goods in Nigeria

Authors: Bright C. Opara, Gideon C. Uboegbulam

Abstract:

This study can be appreciated from the significant role culture exert in purchase decision of durable goods the world over. This study is motivated by cultural diversity in Nigeria and socio-economic changes that have taken place in the recent times. These call for the validation of similarly studies in order to formulate informed marketing strategies that will enhance purchase behaviour. This study therefore, is set out to examine the cultural influence in family purchase decision-making for durable goods in the three major ethnic groups in Nigeria (Hausa, Ibo, and Yoruba). The primary data was sourced using structured and semi-structured research questionnaire, while the secondary information was generated from existing / available relevant literature journals / periodicals. A judgmental sampling technique was used to determine the sample size of 300 households. The Analysis of Variance (ANOVA) statistical tool was used to test the hypotheses, with the aid of Statistical Packages for Social Sciences (SPSS) version 17.0. The finding showed that cultural influence on the family Purchase Decision of Durable Goods does not significantly differ in three ethnic groups, and that family Purchase Decision Making for Durable Goods does not significantly differ in the three ethnic groups. We therefore, conclude that culture do not really impact significantly on the purchase behaviour of the three ethnic groups in the Nigeria as it does in some others. However, there is need for marketers and marketing decision makers not to generalise the findings of this study. This is because of the significant role culture play in purchase behaviour which differs from one culture or country to another.

Keywords: cultural, durable goods, influence, purchase decision

Procedia PDF Downloads 397
854 Real Time Multi Person Action Recognition Using Pose Estimates

Authors: Aishrith Rao

Abstract:

Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.

Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks

Procedia PDF Downloads 147
853 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 107
852 The Effect of Foreign Owned Firms and Licensed Manufacturing Agreements on Innovation: Case of Pharmaceutical Firms in Developing Countries

Authors: Ilham Benali, Nasser Hajji, Nawfal Acha

Abstract:

Given the fact that the pharmaceutical industry is a commonly studied sector in the context of innovation, the majority of innovation research is devoted to the developed markets known by high research and development (R&D) assets and intensive innovation. In contrast, in developing countries where R&D assets are very low, there is relatively little research to mention in the area of pharmaceutical sector innovation, characterized mainly by two principal elements which are the presence of foreign-owned firms and licensed manufacturing agreements between local firms and multinationals. With the scarcity of research in this field, this paper attempts to study the effect of these two elements on the firms’ innovation tendencies. Other traditional factors that influence innovation, which are the age and the size of the firm, the R&D activities and the market structure, revealed in the literature review, will be included in the study in order to try to make this work more exhaustive. The study starts by examining innovation tendency in pharmaceutical firms located in developing countries before analyzing the effect of foreign-owned firms and licensed manufacturing agreements between local firms and multinationals on technological, organizational and marketing innovation. Based on the related work and on the theoretical framework developed, there is a probability that foreign-owned firms and licensed manufacturing agreements between local firms and multinationals have a negative influence on technological innovation. The opposite effect is possible in the case of organizational and marketing innovation.

Keywords: developing countries, foreign owned firms, innovation, licensed manufacturing agreements, pharmaceutical industry

Procedia PDF Downloads 168
851 Social Media Marketing in Indonesian Social Enterprise: The Effect of Members' Level of Participation on Brand Trust and Brand Commitment

Authors: Irsanti Hasyim, Christian Wibisono, Angela Teressia

Abstract:

Social enterprises, as one of the way of doing business are on the rise and emerging from the innovations of decades of social initiatives. In simple way, social enterprises use the business platform to achieve social and/or environmental objectives whilst simultaneously seeking a financial return. In Indonesia, the number of social enterprises rapidly grows and most of them were using social media as their business platform. Social Media are perceived as tools for creating online communities of users who share interests, activities, and objectives. Many companies view the use of online communities in social media as a profitable marketing tool from which they can derive several benefits. Through social media, consumers share experiences with and suggest ideas to others while developing new relationships within their communities. Therefore, this study intends to identify the benefits that participants in online communities seek and examine the relationships between members’ levels of participation, brand trust, and brand commitment. Using convenience sampling method, 236 fully answered questioner was collected and used as a sample of this research. The sample of this research consisted of member or follower in several social media from selected social enterprise in Indonesia. Data collected in this research were process by using Partial Least Square and came up with the result that functional benefit and monetary benefit, are only two from five benefits that proposed were the only variable that has significant result even though from APC, ARS and AARS outcomes show that the model can be claimed to be significant.

Keywords: brand trust, brand commitment, social enterprise, social media

Procedia PDF Downloads 239
850 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 168
849 A Historical Overview and Supplementation of the Dyad Concept of Industrial Marketing

Authors: Kimmo J. Kurppa

Abstract:

This paper describes the development of the buyer-supplier dyad concept over the years and proposes improvements, clarifications and extensions to the prevailing definitions published in 1970’s and 1980’s. This paper suggests a partition of the buyer-supplier dyad to concepts of Commercial Dyad (dyadic interaction in vertical relationships) and Innovative Dyad (dyadic interaction in horizontal relationship) since dyadic interaction takes place in two major types of contexts between industrial firms. Especially the context of joint product development in a dyadic relationship has not been adequately recognized being totally different from the interaction taking place in commercial buyer-supplier interaction. This paper provides therefore a solution to the existing gap in research by clarifying the descriptions and the context where dyadic interaction takes place between industrial firms. This paper also illustrates and explains how the firm’s organization and the interaction taking place inside it, is connected to the dyadic interaction structure between the firm and its partner firm. This theme has been discussed earlier but the phenomenon has not been adequately described and has not been illustrated in earlier research. This conceptual study has been interested in how the dyad concept of Industrial Marketing has been defined in the earlier research and how the definition could be improved. This conceptual paper has been constructed by using the systematic review methodology and proposes avenues for future research. The concept and existence of relationship and interaction between firm’s internal interaction network and external interaction between firm’s dyadic counterparts, need to be verified through empirical research.

Keywords: dyadic interaction, industrial dyad, buyer-supplier relationship, strategic reciprocity, experience, socially adjusted opportunism

Procedia PDF Downloads 223
848 Manufacturing the Authenticity of Dokkaebi’s Visual Representation in Tourist Marketing

Authors: Mikyung Bak

Abstract:

The dokkaebi, a beloved icon of Korean culture, is represented as an elf, goblin, monster, dwarf, or any similar creature in different media, such as animated shows, comics, soap operas, and movies. It is often described as a mythical creature with a horn or horns and long teeth, wearing tiger-skin pants or a grass skirt, and carrying a magic stick. Many Korean researchers agree on the similarity of the image of the Korean dokkaebi with that of the Japanese oni, a view that is regard as negative from an anti-colonial or nationalistic standpoint. They cite such similarity between the two mythical creatures as evidence that Japanese colonialism persists in Korea. The debate on the originality of dokkaebi’s visual representation is an issue that must be addressed urgently. This research demonstrates through a diagram the plurality of interpretations of dokkaebi’s visual representations in what are considered ‘authentic’ images of dokkaebi in Korean art and culture. This diagram presents the opinions of four major groups in the debate, namely, the scholars of Korean literature and folklore, art historians, authors, and artists. It also shows the creation of new dokkaebi visual representations in popular media, including those influenced by the debate. The diagram further proves that dokkaebi’s representations varied, which include the typical persons or invisible characters found in Korean literature, original Korean folk characters in traditional art, and even universal spirit characters. They are also visually represented by completely new creatures as well as oni-based mythical beings and the actual oni itself. The earlier dokkaebi representations were driven by the creation of a national ideology or national cultural paradigm and, thus, were more uniform and protected. In contrast, the more recent representations are influenced by the Korean industrial strategy of ‘cultural economics,’ which is concerned with the international rather than the domestic market. This recent Korean cultural strategy emphasizes diversity and commonality with the global culture rather than originality and locality. It employs traditional cultural resources to construct a global image. Consequently, dokkaebi’s recent representations have become more common and diverse, thereby incorporating even oni’s characteristics. This argument has rendered the grounds of the debate irrelevant. The dokkaebi has been used recently for tourist marketing purposes, particularly in revitalizing interest in regions considered the cradle of various traditional dokkaebi tales. These campaign strategies include the Jeju-do Dokkaebi Park, Koksung Dokkaebi Land, as well as the Taebaek and Sokri-san Dokkaebi Festivals. Almost dokkaebi characters are identical to the Japanese oni in tourist marketing. However, the pursuit for dokkaebi’s authentic visual representation is less interesting and fruitful than the appreciation of the entire spectrum of dokkaebi images that have been created. Thus, scholars and stakeholders must not exclude the possibilities for a variety of potentials within the visual culture. The same sentiment applies to traditional art and craft. This study aims to contribute to a new visualization of the dokkaebi that embraces the possibilities of both folk craft and art, which continue to be uncovered by diverse and careful researchers in a still-developing field.

Keywords: Dokkaebi, post-colonial period, representation, tourist marketing

Procedia PDF Downloads 281
847 Sustainable Packaging and Consumer Behavior in a Customer Experience: A Neuromarketing Perspective

Authors: Francesco Pinci

Abstract:

This study focuses on sustainability and consumer behavior in relation to packaging aesthetics. It investigates the significance of product packaging as a potent marketing tool with a specific emphasis on commercially available pasta as a case study. The research delves into the visual components of packaging, encompassing aspects such as color, shape, packaging material, and logo design. The findings of this study hold particular relevance for food and beverage companies as they seek to gain a comprehensive understanding of the factors influencing consumer purchasing decisions. Furthermore, the study places a significant emphasis on the sustainability aspects of packaging, exploring how eco-friendly and environmentally conscious packaging choices can impact consumer preferences and behaviors. The insights generated from this research contribute to a more sustainable approach to packaging practices and inform marketers on the effective integration of sustainability principles in their branding strategies. Overall, this study provides valuable insights into the dynamic interplay between aesthetics, sustainability, and consumer behavior, offering practical implications for businesses seeking to align their packaging practices with sustainable and consumer-centric approaches. In this study, packaging designs and images from the website of Eataly US.Eataly is one of the leading distributors of authentic Italian pasta worldwide, and its website serves as a rich source of packaging visuals and product representations. By analyzing the packaging and images showcased on the Eataly website, the study gained valuable insights into consumer behavior and preferences regarding pasta packaging in the context of sustainability and aesthetics.

Keywords: consumer behaviour, sustainability, food marketing, neuromarketing

Procedia PDF Downloads 119
846 Building Brand Equity in a Stigmatised Market: A Cannabis Industry Case Study

Authors: Sibongile Masemola

Abstract:

In 2018, South Africa decriminalised recreational cannabis use and private cultivation, since then, cannabis businesses have been established to meet the demand. However, marketing activities remain limited in this industry, and businesses are unable to disseminate promotional messages, however, as a solution, firms can promote their brands and positioning instead of the actual product (Bick, 2015). Branding is essential to create differences among cannabis firms and to attract and keep customers (Abrahamsson, 2014). Building cannabis firms into brands can better position them in the mind of the consumer so that they become and remain competitive. The aim of this study was to explore how South African cannabis retailers can build brand equity in a stigmatised market, despite significant restrictions on marketing efforts. Keller’s (2001) customer-based brand equity (CBBE) model was used as the as the theoretical framework and explored how cannabis firms build their businesses into brands through developing their brand identity, meaning, performance, and relationships, and ultimately creating brand equity. The study employed a qualitative research method, using semi-structured in-depth interviews among 17 participants to gain insights from cannabis owners and marketers in the recreational cannabis environment. Most findings were presented according to the blocks of CBBE model. Furthermore, a conceptual framework named the stigma-based brand equity (SBBE) model was adapted from Keller’s CBBE model to include an additional building block that accounts for industry-specific characteristics unique to stigmatised markets. Findings revealed the pervasiveness of education and its significance to brand building in a stigmatised industry. Results also demonstrated the overall effect stigma has on businesses and their consumers due to the longstanding negative evaluations of cannabis. Hence, through stigma-bonding, brands can develop deep identity-related psychological bonds with their consumers that will potentially lead to strong brand resonance. This study aims to contribute business-relevant knowledge for firms operating in core-stigmatised markets under controlled marketing regulations by exploring how cannabis firms can build brand equity. Practically, this study presents recommendations for retailers in stigmatised markets on how to destigmatise, build brand identity, create brand meaning, elicit desired brand responses, and develop brand relationships – ultimately building brand equity.

Keywords: branding, brand equity, cannabis, organisational stigma

Procedia PDF Downloads 106
845 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 123
844 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 331
843 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia

Authors: Abdul Rahmat

Abstract:

Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.

Keywords: community development, functional skills, gender, HDI

Procedia PDF Downloads 315
842 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 71
841 Masstige and the New Luxury: An Exploratory Study on Cosmetic Brands Among Black African Woman

Authors: Melanie Girdharilall, Anjli Himraj, Shivan Bhagwandin, Marike Venter De Villiers

Abstract:

The allure of luxury has long been attractive, fashionable, mystifying, and complex. As globalisation and the popularity of social media continue to evolve, consumers are seeking status products. However, in emerging economies like South Africa, where 60% of the country lives in poverty, this desire is often far-fetched and out of reach to most of the consumers. As a result, luxury brands are introducing masstige products: products that are associated with luxury and status but within financial reach to the middle-class consumer. The biggest challenge that this industry faces is the lack of knowledge and expertise on black female’s hair composition and offering products that meet their intricate requirements. African consumers have unique hair types, and global brands often do not accommodate for the complex nature of their hair and their product needs. By gaining insight into this phenomenon, global cosmetic brands can benefit from brand expansion, product extensions, increased brand awareness, brand knowledge, and brand equity. The purpose of this study is to determine how cosmetic brands can leverage the concept of masstige products to cater to the needs of middle-income black African woman. This study explores the 18- to 35-year-old black female cohort, which comprises approximately 17% of the South African population. The black hair care industry in Africa is expected a 6% growth rate over the next 5 years. The study is grounded in Paul’s (2019) 3-phase model for masstige marketing. This model demonstrates that product, promotion, and place strategies play a significant role in masstige value creation and the impact of these strategies on the branding dimensions (brand trust, brand association, brand positioning, brand preference, etc.).More specifically, this theoretical framework encompasses nine stages, or dimensions, that are of critical importance to companies who plan to infiltrate the masstige market. In short, the most critical components to consider are the positioning of the product and its competitive advantage in comparison to competitors. Secondly, advertising appeals and use of celebrities, and lastly, distribution channels such as online or in-store while maintain the exclusivity of the brand. By means of an exploratory study, a qualitative approach was undertaken, and focus groups were conducted among black African woman. The focus groups were voice recorded, transcribed, and analysed using Atlas software. The main themes were identified and used to provide brands with insight and direction for developing a comprehensive marketing mix for effectively entering the masstige market. The findings of this study will provide marketing practitioners with in-depth insight into how to effectively position masstige brands in line with consumer needs. It will give direction to both existing and new brands aiming to enter this market, by giving a comprehensive marketing mix for targeting the growing black hair care industry in Africa.

Keywords: africa, masstige, cosmetics, hard care, black females

Procedia PDF Downloads 91
840 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 197
839 Contemporary World Values: The Effects of Quality of Brand-Generated Visual Contents on Customer Engagement Behaviours in Social Commerce

Authors: Hamed Azad, Azadeh M. Ardakani

Abstract:

Visual content, as an integral part of social media marketing, is growing dramatically. They are, in different technological usage categories (i.e., photos, graphics, animation IGTV, Stories, Livestreams, and Reels), associated with improving customer engagement behaviours (CEBs) in social commerce (SC). However, few researchers have explored the impact of specific and occasional contents that respect green products, gender equality, religious freedom, and LGBTs' rights. This study aims to compare and analyse how the ten best global brands (Interbrand's) in different categories communicate with customers on Instagram. Netnography approach and method used to conduct the data collection and data analysis of 1072 Instagram posts and 10494 comments. The results show that brands in fashion, sport, and homeware categories (H&M, Nike, and Ikea) emerge to use more effective content with the above global values elements than other brand categories. Findings also indicate that some different themes such as celebrities, models, pets, kids, aged and disabled people are part of visual management strategies on Instagram brands' pages. This research aims to inform researchers to consider all aspects of visual elements in content quality and marketing managers to increase brand optimisation, awareness, and authenticity by promoting contemporary world values on Instagram.

Keywords: green products, gender equality, religious freedom, LGBTs, Instagram, netnography

Procedia PDF Downloads 127
838 Basketball Game-Related Statistics Discriminating Teams Competing in Basketball Africa League and Euroleague: Comparative Analysis

Authors: Ng'etich K. Stephen

Abstract:

Abstract—Globally analytics in basketball has advanced tremendously in the last decade. Organizations are leveraging the insights to improve team and player performance and, in the long run, generate revenue out of it. Due to limited basketball game-related statistics in African competitions, teams are unaware of how they compete with other continental basketball teams. The purpose of this study is to evaluate the regional difference in basketball game-related statistics between African teams that played in the newly formed league, the basketball African league and the European league. The basketball African league, a competition created through the partnership between NBA and FIBA, offers a good starting point since it has valuable basketball metrics to analyze. This study sought to use multivariate linear discriminant analysis to identify the game-related statistics that discriminate the teams in Euro league and the basketball African league.

Keywords: basketball africa league, basketball, euroleague, fiba, africa

Procedia PDF Downloads 107
837 The Potential of Key Diabetes-related Social Media Influencers in Health Communication

Authors: Zhaozhang Sun

Abstract:

Health communication is essential in promoting healthy lifestyles, preventing unhealthy behaviours, managing disease conditions, and eventually reducing health disparities. Nowadays, social media provides unprecedented opportunities for enhancing health communication for both healthcare providers and people with health conditions, including self-management of chronic conditions such as diabetes. Meanwhile, a special group of active social media users have started playing a pivotal role in providing health ‘solutions’. Such individuals are often referred to as ‘influencers’ because of their ‘central’ position in the online communication system and the persuasive effect their actions and advice may have on audiences' health-related knowledge, attitudes, confidence and behaviours. Work on social media influencers (SMIs) has gained much attention in a specific research field of “influencer marketing”, which mainly focuses on emphasising the use of SMIs to promote or endorse brands’ products and services in the business. Yet to date, a lack of well-studied and empirical evidence has been conducted to guide the exploration of health-related social media influencers. The failure to investigate health-related SMIs can significantly limit the effectiveness of communicating health on social media. Therefore, this article presents a study to identify key diabetes-related SMIs in the UK and the potential implications of information provided by identified social media influencers on their audiences’ diabetes-related knowledge, attitudes and behaviours to bridge the research gap that exists in linking work on influencers in marketing to health communication. The multidisciplinary theories and methods in social media, communication, marketing and diabetes have been adopted, seeking to provide a more practical and promising approach to investigate the potential of social media influencers in health communication. Twitter was chosen as the social media platform to initially identify health influencers and the Twitter API academic was used to extract all the qualitative data. Health-related Influencer Identification Model was developed based on social network analysis, analytic hierarchy process and other screening criteria. Meanwhile, a two-section English-version online questionnaire has been developed to explore the potential implications of social media influencers’ (SMI’s) diabetes-related narratives on the health-related knowledge, attitudes and behaviours (KAB) of their audience. The paper is organised as follows: first, the theoretical and research background of health communication and social media influencers was discussed. Second, the methodology was described by illustrating the model for the identification of health-related SMIs and the development process of the SMIKAB instrument, followed by the results and discussions. The limitations and contributions of this study were highlighted in the summary.

Keywords: health communication, Interdisciplinary research, social media influencers, diabetes management

Procedia PDF Downloads 121
836 AI In Health and Wellbeing - A Seven-Step Engineering Method

Authors: Denis Özdemir, Max Senges

Abstract:

There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.

Keywords: recommender systems, natural language processing, health apps, engineering methods

Procedia PDF Downloads 170
835 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 514
834 Brand Resonance Strategy For Long-term Market Survival: Does The Brand Resonance Matter For Smes? An Investigation In Smes Digital Branding (Facebook, Twitter, Instagram And Blog) Activities And Strong Brand Development

Authors: Noor Hasmini Abd Ghani

Abstract:

Brand resonance is among of new focused strategy that getting more attention in nowadays by larger companies for their long-term market survival. The brand resonance emphasizing of two main characteristics that are intensity and activity able to generate psychology bond and enduring relationship between a brand and consumer. This strong attachment relationship has represented brand resonance with the concept of consumer brand relationship (CBR) that exhibit competitive advantage for long-term market survival. The main consideration toward this brand resonance approach is not only in the context of larger companies but also can be adapted in Small and Medium Enterprises (SMEs) as well. The SMEs have been recognized as vital pillar to the world economy in both developed and emergence countries are undeniable due to their economic growth contributions, such as opportunity for employment, wealth creation, and poverty reduction. In particular, the facts that SMEs in Malaysia are pivotal to the well-being of the Malaysian economy and society are clearly justified, where the SMEs competent in provided jobs to 66% of the workforce and contributed 40% to the GDP. As regards to it several sectors, the SMEs service category that covers the Food & Beverage (F&B) sector is one of the high-potential industries in Malaysia. For that reasons, SMEs strong brand or brand equity is vital to be developed for their long-term market survival. However, there’s still less appropriate strategies in develop their brand equity. The difficulties have never been so evident until Covid-19 swept across the globe from 2020. Since the pandemic began, more than 150,000 SMEs in Malaysia have shut down, leaving more than 1.2 million people jobless. Otherwise, as the SMEs are the pillar of any economy for the countries in the world, and with negative effect of COVID-19 toward their economic growth, thus, their protection has become important more than ever. Therefore, focusing on strategy that able to develop SMEs strong brand is compulsory. Hence, this is where the strategy of brand resonance is introduced in this study. Mainly, this study aims to investigate the impact of CBR as a predictor and mediator in the context of social media marketing (SMM) activities toward SMEs e-brand equity (or strong brand) building. The study employed the quantitative research design concerning on electronic survey method with the valid response rate of 300 respondents. Interestingly, the result revealed the importance role of CBR either as predictor or mediator in the context of SMEs SMM as well as brand equity development. Further, the study provided several theoretical and practical implications that can benefit the SMEs in enhancing their strategic marketing decision.

Keywords: SME brand equity, SME social media marketing, SME consumer brand relationship, SME brand resonance

Procedia PDF Downloads 65