Search results for: holes configuration
733 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction
Authors: Ben Haines, Li Bai
Abstract:
Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency
Procedia PDF Downloads 206732 Factors That Stimulate Employee Development in Polish Small Enterprises
Authors: Ewa Rak
Abstract:
This paper is part of a broader research project on employee development in small enterprises, financed by Polish National Science Centre. The project results will serve as basis for a doctoral dissertation. The paper utilises literature studies and qualitative research conducted in small enterprises operating in the Lower Silesia region of Poland. This paper aims to identify some of the factors that stimulate employee development in small companies operating in Poland. The great variety of business pursuits and applications represented by this sector makes it hard to determine a universal configuration of factors to offer best possible conditions for employee development. Research results suggest that each of the examined companies had one or two of such factors in focus, and serving as the basis for the entire pro-development system. These include: employment security (both for employee and entrepreneur) and extensive knowledge and experience of entrepreneurs, but only if it is combined with a willingness and ability to share it.Keywords: employee development, factors that stimulate employee development, human resources development, Poland, small enterprises, training
Procedia PDF Downloads 268731 A Spatial Perspective on the Metallized Combustion Aspect of Rockets
Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra
Abstract:
Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations
Procedia PDF Downloads 178730 Performances of the Double-Crystal Setup at CERN SPS Accelerator for Physics beyond Colliders Experiments
Authors: Andrii Natochii
Abstract:
We are currently presenting the recent results from the CERN accelerator facilities obtained in the frame of the UA9 Collaboration. The UA9 experiment investigates how a tiny silicon bent crystal (few millimeters long) can be used for various high-energy physics applications. Due to the huge electrostatic field (tens of GV/cm) between crystalline planes, there is a probability for charged particles, impinging the crystal, to be trapped in the channeling regime. It gives a possibility to steer a high intensity and momentum beam by bending the crystal: channeled particles will follow the crystal curvature and deflect on the certain angle (from tens microradians for LHC to few milliradians for SPS energy ranges). The measurements at SPS, performed in 2017 and 2018, confirmed that the protons deflected by the first crystal, inserted in the primary beam halo, can be caught and channeled by the second crystal. In this configuration, we measure the single pass deflection efficiency of the second crystal and prove our opportunity to perform the fixed target experiment at SPS accelerator (LHC in the future).Keywords: channeling, double-crystal setup, fixed target experiment, Timepix detector
Procedia PDF Downloads 152729 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane
Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour
Abstract:
Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.Keywords: hydrogen separation, perovskite, proton conducting membrane.
Procedia PDF Downloads 342728 Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration
Authors: Ravi Kumar, Santhosh Kumar Dubba
Abstract:
This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent.Keywords: diabatic, capillary tube, concentric, R-600a
Procedia PDF Downloads 205727 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints
Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao
Abstract:
This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb
Procedia PDF Downloads 222726 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube
Authors: M. Guen
Abstract:
A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence
Procedia PDF Downloads 251725 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW
Authors: S. Ramesh, A. S. Sasiraaju, K. Sidhaarth, N. Sudhan Rajkumar, V. Manivel Muralidaran
Abstract:
This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.Keywords: chromoly, gas metal arc weld (GMAW), hardness, multi pass weld, shielding gas composition
Procedia PDF Downloads 216724 Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery
Authors: Raksit Nanthatanti, Jarruwat Charoensuk, S. Hirai, Manop Masomtop
Abstract:
In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configurationKeywords: cooling efficiency, channel count, lithium-ion battery, operating
Procedia PDF Downloads 102723 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms
Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre
Abstract:
Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.Keywords: dynamic modelling, long term instability risks, room and pillar, seismic collapse
Procedia PDF Downloads 140722 Quantitative Risk Analysis for Major Subsystems and Project Success of a Highthrouput Satellite
Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Babadoko Dantala Mohammed, Moshood Kareem Olawole
Abstract:
This paper dwells on the risk management required for High throughput Satellite (HTS) project, and major subsystems that pertains to the improved performance and reliability of the spacecraft. The paper gives a clear picture of high‐throughput satellites (HTS) and the associated technologies with performances as they align and differ with the traditional geostationary orbit or Geosynchronous Equatorial Orbit (GEO) Communication Satellites. The paper also highlights critical subsystems and processes in project conceptualization and execution. The paper discusses the configuration of the payload. The need for optimization of resources for the HTS project and successful integration of critical subsystems for spacecraft requires implementation of risk analysis and mitigation from the preliminary design stage; Assembly, Integration and Test (AIT); Launch and in-orbit- Management stage.Keywords: AIT, HTS, in-orbit management, optimization
Procedia PDF Downloads 103721 Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region
Authors: Sen Tanmoy, Jain Sarika, Panda Jagabandhu
Abstract:
The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study.Keywords: LULC, LULC mapping, LANDSAT, WRF-ARW, ISRO, bibliometric Analysis.
Procedia PDF Downloads 29720 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm
Authors: J. Sahari, S. M. Sapuan
Abstract:
Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical
Procedia PDF Downloads 444719 Advocating for and Implementing the Use of Advance Top Bar (ATB) for a More Than 100% Increase in Honey Yield in Top Bar Hives Owing to Honey Harvesting Without Comb Destruction
Authors: Perry Ayi Mankattah
Abstract:
Introduction: Africa, which should lead the world in honey production, is importing three times the honey it produces even though it has a healthy, industrious and large population of bees. This is due to the mechanism of honey harvesting that destroys the combs and thereby reducing honey production and rate of harvesting. For Africa to take its place in the world of honey production, Africa should adopt a method that enables a higher rate of honey harvesting. The Advance Top Bar is, therefore, a simplified framework that provides that answer. It can be made of wood, plastic and metal that can be fabricated by tin/metal smiths, wielders and carpenters at the village level without any very sophisticated machines. Material and Methods: ATB is a top bar-like hollow framework of dimension 3.2*48 cm that can be made of wood, plastic and metal. It is made up of three parts of a constant hollow top bar, a variable grooved bottom bar with both bars being joined through synchronized holes (that align both the top and bottom bars ) by either metal or plastic rods of length 22cm and diameter of 5 mm with rounded balls at both ends It could be used with foundation combs or without and also other accessories to have about ten (10) function which includes commercial propolis harvesting queen rearing etc. The variable bottom bar length depends on the width of the hive, as most African beehives are somehow not standardized. Results: Foundation combs are placed within the Advance Top Bar for the bees to form their combs over its mesh to prevent comb breakage during honey harvesting. Similarly, honeycombs on top bars will produce natural foundation combs when also placed in the Advance top bar system just as they are re-used in the Langstroth Frames. Discussions and Conclusions: Any modification that will promote non-comb destruction during honey harvesting in Top bars shall cause Africa to increase honey production by over 100% as beekeepers adopt the mechanism. Honey-laden combs from the current normal top bars could be placed in the Advance Top Bar to harvest without comb destruction; hence the same system could be used as a transition to the adoption of the Advance Top Bar with less cost.Keywords: honey, harvest, increase, production
Procedia PDF Downloads 68718 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water
Authors: Phanindra Prasad Thummala, Umran Tezcan Un
Abstract:
In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater
Procedia PDF Downloads 462717 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 163716 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling
Authors: Youb Said, Fourar Ali
Abstract:
To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation
Procedia PDF Downloads 382715 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 181714 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition
Authors: H. F. Shi, C. L. Zhang
Abstract:
Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4
Procedia PDF Downloads 200713 Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures
Authors: Pakhapoom Sarapat, James M. Hill, Duangkamon Baowan
Abstract:
Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology.Keywords: carbon nanotori, continuum approximation, interaction energy, Lennard-Jones potential, nanotechnology
Procedia PDF Downloads 150712 A CPS Based Design of Industrial Ecosystems
Authors: Maryam Shayan
Abstract:
Chemical Process Simulation (CPS) software has been generally utilized by chemical (process) designers to outline, test, advance, and coordinate process plants. It is relied upon that modern scientists to bring these same critical thinking advantages to the outline and operation of industrial ecosystems can utilize CPS. This paper gives modern environment researchers and experts with a prologue to CPS and a review of compound designing configuration standards. The paper highlights late research demonstrating that CPS can be utilized to model modern industrial ecosystems, and talks about the advantages of utilizing CPS to address a portion of the specialized difficulties confronting organizations partaking in an industrial ecosystem. CPS can be utilized to (i) quantitatively assess and analyze the potential ecological and monetary advantages of material and vitality linkages; (ii) unravel general plan, retrofit, or operational issues; (iii) help to distinguish complex and frequently irrational arrangements; and (iv) assess imagine a scenario in which situations. CPS ought to be a valuable expansion to the mechanical environment tool stash.Keywords: chemical process simulation (CPS), process plants, industrial ecosystems, compound designing
Procedia PDF Downloads 281711 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices
Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes
Abstract:
Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves
Procedia PDF Downloads 468710 Comparison of Various Control Methods for an Industrial Multiproduct Fractionator
Authors: Merve Aygün Esastürk, Deren Ataç Yılmaz, Görkem Oğur, Emre Özgen Kuzu, Sadık Ödemiş
Abstract:
Hydrocracker plants are one of the most complicated and most profitable units in the refinery process. It takes long chain paraffinic hydrocarbons as feed and turns them into smaller and more valuable products, mainly kerosene and diesel under high pressure with the excess amount of hydrogen. Controlling the product qualities well directly contributes to the unit profit. Control of a plant is mainly based on PID and MPC controllers. Controlling the reaction section is important in terms of reaction severity. However, controlling the fractionation section is more crucial since the end products are separated in fractionation section. In this paper, the importance of well-configured base layer control mechanism, composed of PID controllers, is highlighted. For this purpose, two different base layer control scheme is applied in a hydrocracker fractionator column performances of schemes, which is a direct contribution to better product quality, are compared.Keywords: controller, distillation, configuration selection, hydrocracker, model predictive controller, proportional-integral-derivative controller
Procedia PDF Downloads 439709 Unreliable Production Lines with Simultaneously Unbalanced Operation Time Means, Breakdown, and Repair Rates
Authors: Sabry Shaaban, Tom McNamara, Sarah Hudson
Abstract:
This paper investigates the benefits of deliberately unbalancing both operation time means (MTs) and unreliability (failure and repair rates) for non-automated production lines.The lines were simulated with various line lengths, buffer capacities, degrees of imbalance and patterns of MT and unreliability imbalance. Data on two performance measures, namely throughput (TR) and average buffer level (ABL) were gathered, analyzed and compared to a balanced line counterpart. A number of conclusions were made with respect to the ranking of configurations, as well as to the relationships among the independent design parameters and the dependent variables. It was found that the best configurations are a balanced line arrangement and a monotone decreasing MT order, coupled with either a decreasing or a bowl unreliability configuration, with the first generally resulting in a reduced TR and the second leading to a lower ABL than those of a balanced line.Keywords: unreliable production lines, unequal mean operation times, unbalanced failure and repair rates, throughput, average buffer level
Procedia PDF Downloads 487708 Study of Ground Level Electric Field under 800 kV HVDC Unipolar Laboratory level Transmission line
Authors: K. Urukundu, K. A. Aravind, Pradeep M. Nirgude, K. Sandhya
Abstract:
Transmission of bulk power over a long distance through HVDC transmission lines is gaining importance. This is because the transfer of bulk power through HVDC, from generating stations to load centers over long distances is more economical. However, these HVDC transmission lines create environmental and interference effects under the right of way of the line due to the ionization of the surrounding atmosphere in the vicinity of HVDC lines. The measurement of ground-level electric field and ionic current density is essential for the evaluation of human effects due to electromagnetic interference of the HVDC transmission line. In this paper, experimental laboratory results of the ground-level electric field under the miniature model of 800 kV monopole HVDC line of length 8 meters are presented in lateral configuration with different heights of the conductor from the ground plane. The results are compared with the simulated test results obtained through Finite Element based software.Keywords: bundle, conductor, hexagonal, transmission line, ground-level electric field
Procedia PDF Downloads 225707 Arthroscopic Assisted Fibertape Technique For Recurrent MPFL Reconstruction - Case Series Done In The UK Population
Authors: Naufal Ahmed, Michael Lwin
Abstract:
Background: MPFL reconstructions are ideally performed with au-tografts like gracilis semitendinosus tendon, which may be associated with donor site morbidity and complications. In this case series, we have tried to use fiber tape, which avoids the above complications and also keeps the graft virgin. This kind of synthetic graft has been used successfully in rotator cuffs and ACJ reconstructions with good results. Materials and methods: It was a retrospective data analysis of 45 patients who underwent this procedure from 2014-2020 under a single consultant in a DGH . These patiens have been followed up at 6 weeks, 6 months, 1 year, and 1 ½ years with clinical assessment and KOOS scores. We compared the results with the NJR and also with the Belgium report and was found to be satisfactory and comparable with them. Surgical technique : We used Arthrex fiber tape for the reconstruction of MPFL . Initially, two parallel holes drilled over sup aspect of the patella with help of an image intensifier, and then fiber wire passed through them from the medial to the lateral side and back to the medial side. The fiber wire was attached to the schottle point on the femoral side, giving a good extra articular internal brac-ing to the MPFL. All patients were scoped before the procedure, and the final tightening over the femoral side was done directly under vision to see the position of the patella. Results: We had 45 MPFL reconstructions along with 4 additional procedures 1 ACLR, 2 ACL REPAIR, 1 TTT advancement ( revision MPFL ). There were 14 males and 31 females, and their average age was 25 (13-55 ). We did not have any donor site morbidity, no infection, no fractures, no recurrent dislocations, no reoperations yet. Conclusion: Fiber tape is a feasible and appropriate option for MPFL reconstruction. We haven’t seen any re -operation in our 5 year follow up. This technique avoids the use of autograft, which can be used in the future if needed for revision surgeries. We don’t lose anything by following this simple novel technique.Keywords: arthroscopy, fibertape, MPFL reconstruction, recurrent patella dislocation
Procedia PDF Downloads 140706 Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-Off for South African Birds
Authors: Chevonne Reynolds, Res Altwegg, Andrew Balmford, Claire N. Spottiswoode
Abstract:
Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.Keywords: agriculture, birds, land sharing, land sparing
Procedia PDF Downloads 209705 Review Paper on Structural Behaviour of Industrial Pallet Rack with Braced and Unbraced Frames
Authors: Sourabh R. Dinde, Rajshekar S. Talikoti
Abstract:
According to the structural point of view Industrial Pallet rack structure can be considered typical steel framed structure. This work presents a general analysis of an industrial pallet rack structure, evaluating the influence of each of the components on the global stability. An analytical study for the sensitivity of pallet rack configuration in linear static equivalent lateral loads. The aim is to braced/unbraced frames were design and their analytical models are to be built in software. The finite element analysis is used to determine axial forces in beam and column, maximum storey displacement and buckling loads on braced/unbraced pallet rack structure. Bracing systems are mostly provided to enhance the stiffness factor of the structures with the seismic loads. Unbraced systems have mostly translational modes of failure and are very flexible due to excessive loads.Keywords: buckling capacity, cold formed steel, finite element analysis, pallets Rrack, seismic design
Procedia PDF Downloads 326704 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 288