Search results for: globular clusters
113 Cooperation of Unmanned Vehicles for Accomplishing Missions
Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin
Abstract:
The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning
Procedia PDF Downloads 128112 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 77111 Positive Thinking Reexamined: The Reality of the Role of Negativity & Emotions in the Pursuit of Goals
Authors: Lindsay Foreman
Abstract:
Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachees perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored.. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints, have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Positive View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Positive view going on to achieve their goals, these assumptions need review. And with all the Realistic View going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of 40 ‘Clarity Card’ Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching, and if values, identity, and purpose may play a greater role than goalsKeywords: self-talk, mental health, inner critic, inner coach
Procedia PDF Downloads 59110 Utilizing Topic Modelling for Assessing Mhealth App’s Risks to Users’ Health before and during the COVID-19 Pandemic
Authors: Pedro Augusto Da Silva E Souza Miranda, Niloofar Jalali, Shweta Mistry
Abstract:
BACKGROUND: Software developers utilize automated solutions to scrape users’ reviews to extract meaningful knowledge to identify problems (e.g., bugs, compatibility issues) and possible enhancements (e.g., users’ requests) to their solutions. However, most of these solutions do not consider the health risk aspects to users. Recent works have shed light on the importance of including health risk considerations in the development cycle of mHealth apps to prevent harm to its users. PROBLEM: The COVID-19 Pandemic in Canada (and World) is currently forcing physical distancing upon the general population. This new lifestyle made the usage of mHealth applications more essential than ever, with a projected market forecast of 332 billion dollars by 2025. However, this new insurgency in mHealth usage comes with possible risks to users’ health due to mHealth apps problems (e.g., wrong insulin dosage indication due to a UI error). OBJECTIVE: These works aim to raise awareness amongst mHealth developers of the importance of considering risks to users’ health within their development lifecycle. Moreover, this work also aims to help mHealth developers with a Proof-of-Concept (POC) solution to understand, process, and identify possible health risks to users of mHealth apps based on users’ reviews. METHODS: We conducted a mixed-method study design. We developed a crawler to mine the negative reviews from two samples of mHealth apps (my fitness, medisafe) from the Google Play store users. For each mHealth app, we performed the following steps: • The reviews are divided into two groups, before starting the COVID-19 (reviews’ submission date before 15 Feb 2019) and during the COVID-19 (reviews’ submission date starts from 16 Feb 2019 till Dec 2020). For each period, the Latent Dirichlet Allocation (LDA) topic model was used to identify the different clusters of reviews based on similar topics of review The topics before and during COVID-19 are compared, and the significant difference in frequency and severity of similar topics are identified. RESULTS: We successfully scraped, filtered, processed, and identified health-related topics in both qualitative and quantitative approaches. The results demonstrated the similarity between topics before and during the COVID-19.Keywords: natural language processing (NLP), topic modeling, mHealth, COVID-19, software engineering, telemedicine, health risks
Procedia PDF Downloads 130109 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites
Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar
Abstract:
In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption
Procedia PDF Downloads 179108 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Authors: Sanjay Rathee, Arti Kashyap
Abstract:
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining
Procedia PDF Downloads 294107 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 126106 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods
Authors: Sohyoung Won, Heebal Kim, Dajeong Lim
Abstract:
Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium
Procedia PDF Downloads 141105 The Thoughts and Feelings Associated with Goal Achievement
Authors: Lindsay Foreman
Abstract:
Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachee's perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Optimistic View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Optimistic view going on to achieve their goals, these assumptions need review. And with all the Realistic Views going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of the Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching and if values, identity, and purpose may play a greater role than goals.Keywords: coaching, goals, positive psychology, mindset, leadership, mental health, beliefs, cognition, emotional intelligence
Procedia PDF Downloads 113104 Drug Susceptibility and Genotypic Assessment of Mycobacterial Isolates from Pulmonary Tuberculosis Patients in North East Ethiopia
Authors: Minwuyelet Maru, Solomon Habtemariam, Endalamaw Gadissa, Abraham Aseffa
Abstract:
Background: Tuberculosis is a major public health problem in Ethiopia. The burden of TB is aggravated by emergence and expansion of drug resistant tuberculosis and different lineages of Mycobacterium tuberculosis (M. tuberculosis) have been reported in many parts of the country. Describing strains of Mycobacterial isolates and drug susceptibility pattern is necessary. Method: Sputum samples were collected from smear positive pulmonary TB patients age >= 7 years between October 1, 2012 to September 30, 2013 and Mycobacterial strains isolated on Loweensten Jensen (LJ) media. Each strain was characterized by deletion typing and Spoligotyping. Drug sensitivity testing was determined with the indirect proportion method using Middle brook 7H10 media and association to determine possible risk factors to drug resistance was done. Result: A total of 144 smear positive pulmonary tuberculosis patients were enrolled. The age of participants ranged from 7 to 78 with mean age of 29.22 (±10.77) years. In this study 82.2% (n=97) of the isolates were sensitive to the four first line anti-tuberculosis drugs and resistance to any of the four drugs tested was 17.8% (n=21). A high frequency of any resistance was observed in isoniazid, 13.6%, (n=16) followed by streptomycin, 11.8% (n=14). No significant association of isoniazid resistance with HIV, sex and history of previous TB treatment was observed but there was significant association with age, high between 31-35 years of age (p=0.01). Majority, 89.9% (n=128) of participants were new cases and only 11.1% (n=16) had history of previous TB treatment. No MDR-TB from new cases and 2 MDRTB (13.3%) was isolated from re-treatment cases which was significantly associated with previous TB treatment (p<0.01). Thirty two different types of spoligotype patterns were identified and 74.1% were grouped in to 13 clusters. The dominant strains were SIT 25, 18.1% (n=21), SIT 53, 17.2% (n=20) and SIT 149, 8.6% (n=10). Lineage 4 is the predominant lineage followed by lineage 3 and lineage 7 comprising 65.5% (n=76), 28.4% (n=33) and 6% (n=7) respectively. Majority of strains from lineage 3 and 4 were SIT 25 (63.6%) and SIT 53 (26.3%) whereas SIT 343 was the dominant strain from lineage 7 (71.4%). Conclusion: Wide spread of lineage 3 and lineage 4 of the modern lineage and high number of strain cluster indicates high ongoing transmission. The high proportion resistance to any of the first line anti-tuberculosis drugs may be a potential source in the emergence of MDR-TB. Wide spread of SIT 25 and SIT 53 having a tendency of ease transmission and presence of higher resistance of isoniazid in working and mobile age group, 31-35 years of age may increase risk of drug resistant strains transmission.Keywords: tuberculosis, drug susceptibility, strain diversity, lineage, Ethiopia, spoligotyping
Procedia PDF Downloads 375103 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study
Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel
Abstract:
Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence
Procedia PDF Downloads 212102 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey
Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt
Abstract:
Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone
Procedia PDF Downloads 255101 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 330100 Use of Bamboo Piles in Ground Improvement Design: Case Study
Authors: Thayalan Nall, Andreas Putra
Abstract:
A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure.Keywords: bamboo piles, ground improvement, reclamation, breakwater failure
Procedia PDF Downloads 41799 Distinct Patterns of Resilience Identified Using Smartphone Mobile Experience Sampling Method (M-ESM) and a Dual Model of Mental Health
Authors: Hussain-Abdulah Arjmand, Nikki S. Rickard
Abstract:
The response to stress can be highly heterogenous, and may be influenced by methodological factors. The integrity of data will be optimized by measuring both positive and negative affective responses to an event, by measuring responses in real time as close to the stressful event as possible, and by utilizing data collection methods that do not interfere with naturalistic behaviours. The aim of the current study was to explore short term prototypical responses to major stressor events on outcome measures encompassing both positive and negative indicators of psychological functioning. A novel mobile experience sampling methodology (m-ESM) was utilized to monitor both effective responses to stressors in real time. A smartphone mental health app (‘Moodprism’) which prompts users daily to report both their positive and negative mood, as well as whether any significant event had occurred in the past 24 hours, was developed for this purpose. A sample of 142 participants was recruited as part of the promotion of this app. Participants’ daily reported experience of stressor events, levels of depressive symptoms and positive affect were collected across a 30 day period as they used the app. For each participant, major stressor events were identified on the subjective severity of the event rated by the user. Depression and positive affect ratings were extracted for the three days following the event. Responses to the event were scaled relative to their general reactivity across the remainder of the 30 day period. Participants were first clustered into groups based on initial reactivity and subsequent recovery following a stressor event. This revealed distinct patterns of responding along depressive symptomatology and positive affect. Participants were then grouped based on allocations to clusters in each outcome variable. A highly individualised nature in which participants respond to stressor events, in symptoms of depression and levels of positive affect, was observed. A complete description of the novel profiles identified will be presented at the conference. These findings suggest that real-time measurement of both positive and negative functioning to stressors yields a more complex set of responses than previously observed with retrospective reporting. The use of smartphone technology to measure individualized responding also proved to shed significant insight.Keywords: depression, experience sampling methodology, positive functioning, resilience
Procedia PDF Downloads 23798 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater
Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen
Abstract:
Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity
Procedia PDF Downloads 23697 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 10596 Critical Core Skills Profiling in the Singaporean Workforce
Authors: Bi Xiao Fang, Tan Bao Zhen
Abstract:
Soft skills, core competencies, and generic competencies are exchangeable terminologies often used to represent a similar concept. In the Singapore context, such skills are currently being referred to as Critical Core Skills (CCS). In 2019, SkillsFuture Singapore (SSG) reviewed the Generic Skills and Competencies (GSC) framework that was first introduced in 2016, culminating in the development of the Critical Core Skills (CCS) framework comprising 16 soft skills classified into three clusters. The CCS framework is part of the Skills Framework, and whose stated purpose is to create a common skills language for individuals, employers and training providers. It is also developed with the objectives of building deep skills for a lean workforce, enhance business competitiveness and support employment and employability. This further helps to facilitate skills recognition and support the design of training programs for skills and career development. According to SSG, every job role requires a set of technical skills and a set of Critical Core Skills to perform well at work, whereby technical skills refer to skills required to perform key tasks of the job. There has been an increasing emphasis on soft skills for the future of work. A recent study involving approximately 80 organizations across 28 sectors in Singapore revealed that more enterprises are beginning to recognize that soft skills support their employees’ performance and business competitiveness. Though CCS is of high importance for the development of the workforce’s employability, there is little attention paid to the CCS use and profiling across occupations. A better understanding of how CCS is distributed across the economy will thus significantly enhance SSG’s career guidance services as well as training providers’ services to graduates and workers and guide organizations in their hiring for soft skills. This CCS profiling study sought to understand how CCS is demanded in different occupations. To achieve its research objectives, this study adopted a quantitative method to measure CCS use across different occupations in the Singaporean workforce. Based on the CCS framework developed by SSG, the research team adopted a formative approach to developing the CCS profiling tool to measure the importance of and self-efficacy in the use of CCS among the Singaporean workforce. Drawing on the survey results from 2500 participants, this study managed to profile them into seven occupation groups based on the different patterns of importance and confidence levels of the use of CCS. Each occupation group is labeled according to the most salient and demanded CCS. In the meantime, the CCS in each occupation group, which may need some further strengthening, were also identified. The profiling of CCS use has significant implications for different stakeholders, e.g., employers could leverage the profiling results to hire the staff with the soft skills demanded by the job.Keywords: employability, skills profiling, skills measurement, soft skills
Procedia PDF Downloads 9595 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece
Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis
Abstract:
The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.Keywords: community resilience, natural disasters, place attachment, wildfire
Procedia PDF Downloads 10394 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis
Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri
Abstract:
In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer
Procedia PDF Downloads 8593 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 6692 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch
Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane
Abstract:
Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.Keywords: learning city, sustainable creative city, creative industry, good city form
Procedia PDF Downloads 31091 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 17090 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces
Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani
Abstract:
A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.Keywords: readiness, maturity, system, integration
Procedia PDF Downloads 9289 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria
Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai
Abstract:
Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon
Procedia PDF Downloads 72188 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 28387 Factors Predicting Symptom Cluster Functional Status and Quality of Life of Chronic Obstructive Pulmonary Disease Patients
Authors: D. Supaporn, B. Julaluk
Abstract:
The purposes of this study were to study symptom cluster, functional status and quality of life of patients with chronic obstructive pulmonary disease (COPD), and to examine factors related to and predicting symptom cluster, functional status and quality of life of COPD patients. The sample was 180 COPD patients multi-stage random sampling from 4 hospitals in the eastern region, Thailand. The research instruments were 8 questionnaires and recorded forms measuring personal and illness data, co-morbidity, physical and psychological symptom, health status perception, social support, and regimen adherence, functional status and quality of life. Spearman rank and Pearson correlation coefficient, exploratory factors analysis and standard multiple regression were used to analyzed data. The findings revealed that two symptom clusters were generated: physical symptom cluster including dyspnea, fatigue and insomnia; and, psychological symptom cluster including anxiety and depression. Scores of physical symptom cluster was at moderate level while that of psychological symptom cluster was at low level. Scores on functional status, social support and overall regimen adherence were at good level whereas scores on quality of life and health status perception were at moderate level. Disease severity was positively related to physical symptom cluster, psychological symptom cluster and quality of life, and was negatively related to functional status at a moderate level (rs = .512, .509, .588 and -.611, respectively). Co-morbidity was positively related to physical symptom cluster and psychological symptom cluster at a low level (r = .179 and .176, respectively). Regimen adherence was negatively related to quality of life and psychological symptom cluster at a low level (r=-.277 and -.309, respectively), and was positively related to functional status at a moderate level (r=.331). Health status perception was negatively related to physical symptom cluster, psychological symptom cluster and quality of life at a moderate to high level (r = -.567, -.640 and -.721, respectively) and was positively related to functional status at a high level (r = .732). Social support was positively related to functional status (r=.235) and was negatively related to quality of life at a low level (r=-.178). Physical symptom cluster was negatively related to functional status (r= -.490) and was positively related to quality of life at a moderate level (r=.566). Psychological symptom cluster was negatively related to functional status and was positively related to quality of life at a moderate level (r= -.566 and .559, respectively). Disease severity, co-morbidity and health status perception could predict 40.2% of the variance of physical symptom cluster. Disease severity, co-morbidity, regimen adherence and health status perception could predict 49.8% of the variance of psychological symptom cluster. Co-morbidity, regimen adherence and health status perception could predict 65.0% of the variance of functional status. Disease severity, health status perception and physical symptom cluster could predict 60.0% of the variance of quality of life in COPD patients. The results of this study can be used for enhancing quality of life of COPD patients.Keywords: chronic obstructive pulmonary disease, functional status, quality of life, symptom cluster
Procedia PDF Downloads 55886 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 36585 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification
Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi
Abstract:
Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix
Procedia PDF Downloads 13784 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano
Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das
Abstract:
Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption
Procedia PDF Downloads 415