Search results for: gas transport membranes
1700 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment
Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal
Abstract:
There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.Keywords: auto-rickshaws, business model, GPS device, mobile application
Procedia PDF Downloads 2271699 Delhi Metro: A Race towards Zero Emission
Authors: Pramit Garg, Vikas Kumar
Abstract:
In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport
Procedia PDF Downloads 1251698 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production
Authors: Olga Orynycz, Andrzej Wasiak
Abstract:
Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system
Procedia PDF Downloads 3461697 Thermoelectric Properties of Doped Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltz- mann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.Keywords: conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property
Procedia PDF Downloads 1241696 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption
Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe
Abstract:
Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption
Procedia PDF Downloads 3871695 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level
Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova
Abstract:
The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature
Procedia PDF Downloads 1351694 Expert System for Road Bridge Constructions
Authors: Michael Dimmer, Holger Flederer
Abstract:
The basis of realizing a construction project is a technically flawless concept which satisfies conditions regarding environment and costs, as well as static-constructional terms. The presented software system actively supports civil engineers during the setup of optimal designs, by giving advice regarding durability, life-cycle costs, sustainability and much more. A major part of the surrounding conditions of a design process is gathered and assimilated by experienced engineers subconsciously. It is a question about eligible building techniques and their practicability by considering emerging costs. Planning engineers have acquired many of this experience during their professional life and use them for their daily work. Occasionally, the planning engineer should disassociate himself from his experience to be open for new and better solutions which meet the functional demands, as well. The developed expert system gives planning engineers recommendations for preferred design options of new constructions as well as for existing bridge constructions. It is possible to analyze construction elements and techniques regarding sustainability and life-cycle costs. This way the software provides recommendations for future constructions. Furthermore, there is an option to design existing road bridges especially for heavy duty transport. This implies a route planning tool to get quick and reliable information as to whether the bridge support structures of a transport route have been measured sufficiently for a certain heavy duty transport. The use of this expert system in bridge planning companies and building authorities will save costs massively for new and existent bridge constructions. This is achieved by consequently considering parameters like life-cycle costs and sustainability for its planning recommendations.Keywords: expert system, planning process, road bridges, software system
Procedia PDF Downloads 2771693 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle
Authors: Pawel Magryta, Mateusz Paszko
Abstract:
In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag
Procedia PDF Downloads 3101692 COVID-19 Genomic Analysis and Complete Evaluation
Authors: Narin Salehiyan, Ramin Ghasemi Shayan
Abstract:
In order to investigate coronavirus RNA replication, transcription, recombination, protein processing and transport, virion assembly, the identification of coronavirus-specific cell receptors, and polymerase processing, the manipulation of coronavirus clones and complementary DNAs (cDNAs) of defective-interfering (DI) RNAs is the subject of this chapter. The idea of the Covid genome is nonsegmented, single-abandoned, and positive-sense RNA. When compared to other RNA viruses, its size is significantly greater, ranging from 27 to 32 kb. The quality encoding the enormous surface glycoprotein depends on 4.4 kb, encoding a forcing trimeric, profoundly glycosylated protein. This takes off exactly 20 nm over the virion envelope, giving the infection the appearance-with a little creative mind of a crown or coronet. Covid research has added to the comprehension of numerous parts of atomic science as a general rule, like the component of RNA union, translational control, and protein transport and handling. It stays a fortune equipped for creating startling experiences.Keywords: covid-19, corona, virus, genome, genetic
Procedia PDF Downloads 721691 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South
Authors: Rati Sandeep Choudhari
Abstract:
Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach
Procedia PDF Downloads 1281690 safeRoute: Information Safety System for Professional Road Driving
Authors: Francisco Toledo-Castillo, Pilar Peiró-Torres, María Josefa Sospedra-Baeza, Sergio Hidalgo-Fuentes
Abstract:
The communication presented is about tasks that are been developed in the research project “safeRoute”, “Information safety system for professional road driving” (IPT-2012-110-370000). This R&D project was proposed by the consortium formed by Fagor Electronica la SEU 3 and the University of Valencia to the Ministry of Economy and Competitiveness, which approved it inside the INNPACTO subprogramme grants. Through this type of calls, the Ministry promote the innovative capacity of the Spanish companies and turn on the mechanism for competing internationally. With this kind of calls, private investments for technological and industrial development join their R & D resources with public entities to implement innovative project that could have an international exposure. Thus INNPACTO subprogramme promotes the creation of research projects with public-private partnerships that create exploitable final products. The “safeRoute” Project pretends develop a tool to help to make more safety the travels of commercial transport vehicles of goods and passengers. To achieve its objectives, the project is focused in three main lines of research: vehicle safety, the safety of the roads that they are using, and the safety which drivers do their job, their behaviour while they are driving. To improve safety, the project gives information about these three factors to all people that are involved in the safety of the professional transport. These three factors have influence to the occurrence of traffic accidents, thanks to the information provided and treated about these factors, we can achieve a significant reduction in occupational accidents in the transport sector. SafeRoute provide information about routes, vehicles, and driver behaviours, and in this manner pretends provide to transport companies a tool which could result in a safer driving results and could reduce their costs related to traffic accidents of their vehicles, in that way, this tool could help them to be more competitive, and give a more reliable service. This paper will focus mainly on the information about routes that drivers use to travel in their professional work, and how the researchers of this project have catalogued and evaluated these routes, and finally how that information will be provided to users.Keywords: driver support systems, professional drivers, road safety, safeRoute
Procedia PDF Downloads 4031689 Crossing of the Intestinal Barrier Thanks to Targeted Biologics: Nanofitins
Authors: Solene Masloh, Anne Chevrel, Maxime Culot, Leonardo Scapozza, Magali Zeisser-Labouebe
Abstract:
The limited stability of clinically proven therapeutic antibodies limits their administration by the parenteral route. However, oral administration remains the best alternative as it is the most convenient and less invasive one. Obtaining a targeted treatment based on biologics, which can be orally administered, would, therefore, be an ideal situation to improve patient adherence and compliance. Nevertheless, the delivery of macromolecules through the intestine remains challenging because of their sensitivity to the harsh conditions of the gastrointestinal tract and their low permeability across the intestinal mucosa. To address this challenge, this project aims to demonstrate that targeting receptor-mediated endocytosis followed by transcytosis could maximize the intestinal uptake and transport of large molecules, such as Nanofitins. These affinity proteins of 7 kDa with binding properties similar to antibodies have already demonstrated retained stability in the digestive tract and local efficiency. However, their size does not allow passive diffusion through the intestinal barrier. Nanofitins having a controlled affinity for membrane receptors involved in the transcytosis mechanism used naturally for the transport of large molecules in humans were generated. Proteins were expressed using ribosome display and selected based on affinity to the targeted receptor and other characteristics. Their uptake and transport ex vivo across viable porcine intestines were investigated using an Ussing chambers system. In this paper, we will report the results achieved while addressing the different challenges linked to this study. To validate the ex vivo model, first, we proved the presence of the receptors targeted in humans on the porcine intestine. Then, after the identification of an optimal way of detection of Nanofitins, transport experiments were performed on porcine intestines with viability followed during the time of the experiment. The results, showing that the physiological process of transcytosis is capable of being triggered by the binding of Nanofitins on their target, will be reported here. In conclusion, the results show that Nanofitins can be transported across the intestinal barrier by triggering the receptor-mediated transcytosis and that the ex vivo model is an interesting technique to assess biologics absorption through the intestine.Keywords: ex-vivo, Nanofitins, oral administration, transcytosis
Procedia PDF Downloads 1781688 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1031687 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation
Authors: O. Hinrichs, H. Franz, G. Reiter
Abstract:
Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing
Procedia PDF Downloads 3361686 A Case-Study Analysis on the Necessity of Testing for Cyber Risk Mitigation on Maritime Transport
Authors: Polychronis Kapalidis
Abstract:
In recent years, researchers have started to turn their attention to cyber security and maritime security independently, neglecting, in most cases, to examine the areas where these two critical issues are intertwined. The impact of cybersecurity issues on the maritime economy is emerging dramatically. Maritime transport and all related activities are conducted by technology-intensive platforms, which today rely heavily on information systems. The paper’s argument is that when no defense is completely effective against cyber attacks, it is vital to test responses to the inevitable incursions. Hence, preparedness in the form of testing existing cybersecurity structure via different tools for potential attacks is vital for minimizing risks. Traditional criminal activities may further be facilitated and evolved through the misuse of cyberspace. Kidnap, piracy, fraud, theft of cargo and imposition of ransomware are the major of these activities that mainly target the industry’s most valuable asset; the ship. The paper, adopting a case-study analysis, based on stakeholder consultation and secondary data analysis, namely policy and strategic-related documentation, presents the importance of holistic testing in the sector. Arguing that poor understanding of the issue leads to the adoption of ineffective policies the paper will present the level of awareness within the industry and assess the risks and vulnerabilities of ships to these cybercriminal activities. It will conclude by suggesting that testing procedures must be focused on three main pillars within the maritime transport sector: the human factor, the infrastructure, and the procedures.Keywords: cybercrime, cybersecurity, organized crime, risk mitigation
Procedia PDF Downloads 1571685 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method
Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski
Abstract:
In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide
Procedia PDF Downloads 4981684 Travel Time Estimation of Public Transport Networks Based on Commercial Incidence Areas in Quito Historic Center
Authors: M. Fernanda Salgado, Alfonso Tierra, David S. Sandoval, Wilbert G. Aguilar
Abstract:
Public transportation buses usually vary the speed depending on the places with the number of passengers. They require having efficient travel planning, a plan that will help them choose the fast route. Initially, an estimation tool is necessary to determine the travel time of each route, clearly establishing the possibilities. In this work, we give a practical solution that makes use of a concept that defines as areas of commercial incidence. These areas are based on the hypothesis that in the commercial places there is a greater flow of people and therefore the buses remain more time in the stops. The areas have one or more segments of routes, which have an incidence factor that allows to estimate the times. In addition, initial results are presented that verify the hypotheses and that promise adequately the travel times. In a future work, we take this approach to make an efficient travel planning system.Keywords: commercial incidence, planning, public transport, speed travel, travel time
Procedia PDF Downloads 2521683 The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study
Authors: A. Bentabet, A. Aydin, N. Fenineche
Abstract:
The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data.Keywords: Bentabet spherical geometric model, continuous slowing down approximation, stopping powers, ranges, mean penetration depth
Procedia PDF Downloads 6411682 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study
Authors: G. Singh, H.Schuster, U. Füssel
Abstract:
The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode
Procedia PDF Downloads 1861681 Optimization of the Feedstock Supply of an Oilseeds Conversion Unit for Biofuel Production in West Africa: A Comparative Study of the Supply of Jatropha curcas and Balanites aegyptiaca Seeds
Authors: Linda D. F. Bambara, Marie Sawadogo
Abstract:
Jatropha curcas (jatropha) is the plant that has been the most studied for biofuel production in West Africa. There exist however other plants such as Balanites aegyptiaca (balanites) that have been targeted as a potential feedstock for biofuel production. This biomass could be an alternative feedstock for the production of straight vegetable oil (SVO) at costs lower than jatropha-based SVO production costs. This study aims firstly to determine, through an MILP model, the optimal organization that minimizes the costs of the oilseeds supply of two biomass conversion units (BCU) exploiting respectively jatropha seeds and the balanitès seeds. Secondly, the study aims to carry out a comparative study of these costs obtained for each BCU. The model was then implemented on two theoretical cases studies built on the basis of the common practices in Burkina Faso and two scenarios were carried out for each case study. In Scenario 1, 3 pre-processing locations ("at the harvesting area", "at the gathering points", "at the BCU") are possible. In scenario 2, only one location ("at the BCU") is possible. For each biomass, the system studied is the upstream supply chain (harvesting, transport and pre-processing (drying, dehulling, depulping)), including cultivation (for jatropha). The model optimizes the area of land to be exploited based on the productivity of the studied plants and material losses that may occur during the harvesting and the supply of the BCU. It then defines the configuration of the logistics network allowing an optimal supply of the BCU taking into account the most common means of transport in West African rural areas. For the two scenarios, the results of the implementation showed that the total area exploited for balanites (1807 ha) is 4.7 times greater than the total area exploited for Jatropha (381 ha). In both case studies, the location of pre-processing “at the harvesting area” was always chosen for scenario1. As the balanites trees were not planted and because the first harvest of the jatropha seeds took place 4 years after planting, the cost price of the seeds at the BCU without the pre-processing costs was about 430 XOF/kg. This cost is 3 times higher than the balanites's one, which is 140 XOF/kg. After the first year of harvest, i.e. 5 years after planting, and assuming that the yield remains constant, the same cost price is about 200 XOF/kg for Jatropha. This cost is still 1.4 times greater than the balanites's one. The transport cost of the balanites seeds is about 120 XOF/kg. This cost is similar for the jatropha seeds. However, when the pre-processing is located at the BCU, i.e. for scenario2, the transport costs of the balanites seeds is 1200 XOF/kg. These costs are 6 times greater than the transport costs of jatropha which is 200 XOF/kg. These results show that the cost price of the balanites seeds at the BCU can be competitive compared to the jatropha's one if the pre-processing is located at the harvesting area.Keywords: Balanites aegyptiaca, biomass conversion, Jatropha curcas, optimization, post-harvest operations
Procedia PDF Downloads 3381680 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy
Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa
Abstract:
Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator
Procedia PDF Downloads 1921679 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods
Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho
Abstract:
Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator
Procedia PDF Downloads 1601678 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 941677 Integration of the Electro-Activation Technology for Soy Meal Valorization
Authors: Natela Gerliani, Mohammed Aider
Abstract:
Nowadays, the interest of using sustainable technologies for protein extraction from underutilized oilseeds is growing. Currently, a major disposal problem for the oil industry is by-products of plant food processing such as soybean meal. That is why valorization of soybean meal is important for the oil industry since it contains high-quality proteins and other valuable components. Generally, soybean meal is used in livestock and poultry feed but is rarely used in human feed. Though chemical composition of this meal compensate nutritional deficiency and can be used to balance protein in human food. Regarding the efficiency of soybean meal valorization, extraction is a key process for obtaining enriched protein ingredient, which can be incorporated into the food matrix. However, most of the food components such as proteins extracted from oilseeds by-products imply the utilization of organic and inorganic chemicals (e.g. acids, bases, TCA-acetone) having a significant environmental impact. In a context of sustainable production, the use of an electro-activation technology seems to be a good alternative. Indeed, the electro-activation technology requires only water, food grade salt and electricity as main materials. Moreover, this innovative technology helps to avoid special equipment and trainings for workers safety as well as transport and storage of hazardous materials. Electro-activation is a technology based on applied electrochemistry for the generation of acidic and alkaline solutions on the basis of the oxidation-reduction reactions that occur at the vicinity electrode/solution interfaces. It is an eco-friendly process that can be used to replace the conventional acidic and alkaline extraction. In this research, the electro-activation technology for protein extraction from soybean meal was carried out in the electro-activation reactor. This reactor consists of three compartments separated by cation and anion exchange membranes that allow creating non-contacting acidic and basic solutions. Different current intensities (150 mA, 300 mA and 450 mA) and treatment durations (10 min, 30 min and 50 min) were tested. The results showed that the extracts obtained by the electro-activation method have good quality in comparison to conventional extracts. For instance, extractability obtained with electro-activation method was 55% whereas with the conventional method it was only 36%. Moreover, a maximum protein quantity of 48 % in the extract was obtained with the electro-activation technology comparing to the maximum amount of protein obtained by conventional extraction of 41 %. Hence, the environmentally sustainable electro-activation technology seems to be a promising type of protein extraction that can replace conventional extraction technology.Keywords: by-products, eco-friendly technology, electro-activation, soybean meal
Procedia PDF Downloads 2281676 Biocellulose as Platform for the Development of Multifunctional Materials
Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak
Abstract:
Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles
Procedia PDF Downloads 2291675 Properties of Poly(Amide-Imide) with Low Residual Stress for Electronic Material
Authors: Kwangin Kim, Taewon Yoo, Haksoo Han
Abstract:
Polyimide is a superior polymer in the electronics industry, and we conducted a study to synthesize poly(amide-imide) at low temperatures. Poly(amide-imide) was synthesized at low-temperature curing to offer a thermal stable membrane with low residual stress and good processability. As a result, the low crack polymer with good processability could be used to various applications such as semiconductors, integrated circuits, coating materials, membranes, and display. The synthesis of poly(amide-imide) at low temperatures was confirmed by Fourier transform infrared spectroscopy (FT-IR). Thermal stabilities of the polymer was confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).Keywords: poly(amide-imide), residual stress, thermal stability
Procedia PDF Downloads 4191674 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber
Authors: Sang Kompiang Wirawan, Chandra Purnomo
Abstract:
Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion
Procedia PDF Downloads 3551673 Air Quality Health Index in Windsor, Canada, and the Impact of Regional Scale Transport
Authors: Xiaohong Xu, Tianchu Zhang, Yangfan Chen, Rongtai Tan
Abstract:
In Canada, Air Quality Health Index (AQHI) is a scale designed to help residences understand the impact of air quality on human health. In Ontario, Canada, AQHI was implemented in June 2015. This study investigated temporal variability of daily AQHI and impact of regional transport on AQHI in Windsor, Ontario, Canada from 2016 to 2019. During 2016–2019, 1428 daily AQHIs were recorded in Windsor Downtown Station. Among those, the AQHIs were at the low health risk level (AQHI = 1, 2 or 3) in 82% of days, only a few days at high risk level (AQHI = 7), the rest were at moderate health risk level (AQHI = 4, 5, 6), indicating air quality in Windsor was fairly good with relatively low health risk. The annual mean AQHI value decreased from 2.95 in 2016 to 2.81 in 2019, demonstrating the improvement of air quality. Half of the days, AQHI were 3 regardless of season. AQHI was higher in the warm season (3.1) than in the cold season (2.6) due to more frequent moderate risk days (27%, AQHI = 4) in warm season and more frequent low risk days (42%, AQHI = 2) in the cold season. Among the three pollutants considered in AQHI calculation, O3 was the most frequently reported dominant contributor to daily AQHI (88% of days), followed by NO2 (12%), especially in the cold season, with small contribution from PM2.5 (<1%). In the past two decades, NO2 concentrations had decreased significantly and O3 concentrations had increased, resulting in daily AQHI being less reliance on NO2 (from 51% of days being the primary contributor during 2003–2010 to 12% during 2016–2019) and more on O3 concentrations (49% to 88%). Trajectory analysis found that AQHI ≤ 3 days were closely associated with air masses from the north and northwest, whereas AQHI > 3 days were closely associated with air masses from the west and southwest. This is because northerly flows brought in clear air mass owing to less industrial facilities, while polluted air masses were transported from the south of Windsor, where several industrial states of the US were located. Overall, O3 concentrations dictate the daily AQHI values, the seasonal variability of AQHI, and the impact of regional transport on AQHI in Windsor. This makes further reductions of AQHI challenging because O3 concentrations are likely to continue increasing due to weakened consumption of O3 by NO owing to decreasing NO emissions and more hot days because of climate change. The predominant and increasing contribution of O3 to AQHI calls for more effective control measures to mitigate O3 pollution and its impact on human health and the environment.Keywords: air quality, Air Quality Health Index (AQHI), hysplit, regional transport, windsor
Procedia PDF Downloads 641672 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear
Abstract:
In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.Keywords: composite, FEM, membrane, wrinkling
Procedia PDF Downloads 2751671 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides
Procedia PDF Downloads 197