Search results for: drug property prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5651

Search results for: drug property prediction

5111 The Usefulness of Premature Chromosome Condensation Scoring Module in Cell Response to Ionizing Radiation

Authors: K. Rawojć, J. Miszczyk, A. Możdżeń, A. Panek, J. Swakoń, M. Rydygier

Abstract:

Due to the mitotic delay, poor mitotic index and disappearance of lymphocytes from peripheral blood circulation, assessing the DNA damage after high dose exposure is less effective. Conventional chromosome aberration analysis or cytokinesis-blocked micronucleus assay do not provide an accurate dose estimation or radiosensitivity prediction in doses higher than 6.0 Gy. For this reason, there is a need to establish reliable methods allowing analysis of biological effects after exposure in high dose range i.e., during particle radiotherapy. Lately, Premature Chromosome Condensation (PCC) has become an important method in high dose biodosimetry and a promising treatment modality to cancer patients. The aim of the study was to evaluate the usefulness of drug-induced PCC scoring procedure in an experimental mode, where 100 G2/M cells were analyzed in different dose ranges. To test the consistency of obtained results, scoring was performed by 3 independent persons in the same mode and following identical scoring criteria. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from healthy donors with 60 MeV protons and 250 keV X-rays, in the range of 4.0 – 20.0 Gy. Drug-induced PCC assay was performed on human peripheral blood lymphocytes (HPBL) isolated after in vitro exposure. Cells were cultured for 48 hours with PHA. Then to achieve premature condensation, calyculin A was added. After Giemsa staining, chromosome spreads were photographed and manually analyzed by scorers. The dose-effect curves were derived by counting the excess chromosome fragments. The results indicated adequate dose estimates for the whole-body exposure scenario in the high dose range for both studied types of radiation. Moreover, compared results revealed no significant differences between scores, which has an important meaning in reducing the analysis time. These investigations were conducted as a part of an extended examination of 60 MeV protons from AIC-144 isochronous cyclotron, at the Institute of Nuclear Physics in Kraków, Poland (IFJ PAN) by cytogenetic and molecular methods and were partially supported by grant DEC-2013/09/D/NZ7/00324 from the National Science Centre, Poland.

Keywords: cell response to radiation exposure, drug induced premature chromosome condensation, premature chromosome condensation procedure, proton therapy

Procedia PDF Downloads 352
5110 A Modified Diminishing Partnership for Home Financing

Authors: N. Yachou, R. Aboulaich

Abstract:

Home is a basic necessity for human life, that why home financing takes a large chunk of people’s income. Therefore, Islamic and Conventional Banks try to offer new product in order to respond to customer needs related to home financing. Basing on this fact, we propose a Modified Diminishing Partnership model based on profit and loss sharing to reduce the duration of getting the full shares in the house property. Our proposition will be represented by the rental that customer has to give every month to the bank with redemption to increase his shares on the property of the house.

Keywords: home financing, interest rate, rental rate, modified diminishing partnership

Procedia PDF Downloads 348
5109 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 480
5108 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 157
5107 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery

Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper

Abstract:

Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.

Keywords: acoustics, drug delivery, liposomes, surface acoustic waves

Procedia PDF Downloads 124
5106 Nonparametric Quantile Regression for Multivariate Spatial Data

Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang

Abstract:

Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.

Keywords: conditional quantile, kernel, nonparametric, stationary

Procedia PDF Downloads 154
5105 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 168
5104 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates

Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas

Abstract:

Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.

Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol

Procedia PDF Downloads 299
5103 Exploring the Relationship Between Life Experiences and Early Relapse Among Imprisoned Users of Illegal Drugs in Oman: A Focused Ethnography

Authors: Hamida Hamed Said Al Harthi

Abstract:

Background: Illegal drug use is a rising problem that affects Omani youth. This research aimed to study a group of young Omani men who were imprisoned more than once for illegal drug use, focusing on exploring their lifestyle experiences inside and outside the prison and whether these contributed to their early relapse and re-imprisonment. This is the first study of its kind from Oman conducted in a prison setting. Methods: 19 Omani males aged 18–35 years imprisoned in Oman Central Prison were recruited using purposive sampling. Focused ethnography was conducted over 8 months to explore the drug-related experiences outside the prison and during imprisonment. Face-to-face semi-structured interviews with the participants yielded detailed transcripts and field notes. These were thematically analyzed, and the results were compared with the existing literature. Results: The participants’ voices yielded new insights into the lives of young Omani men imprisoned for illegal drug use, including their sufferings and challenges in prison. These included: entry shock, timing and boredom, drug trafficking in prison, as well as physical and psychological health issues. Overall, imprisonment was reported to have negatively impacted the participants’ health, personality, self-concept, emotions, attitudes, behavior and life expectations. The participants reported how their efforts to reintegrate into the Omani community after release from prison were rebuffed due to stigmatization and rejection from society and family. They also experienced frequent unemployment, police surveillance, accommodation problems and a lack of rehabilitation facilities. The immensity of the accumulated psychophysiological trauma contributed to their early relapse and re-imprisonment. Conclusion: This thesis concludes that imprisonment is largely ineffective in controlling drug use in Oman. Urgent action is required across multiple sectors to improve the lives and prospects of users of illegal drugs within and outside the prison to minimize factors contributing to early relapse. Key Words: illegal drugs, drug users, Oman, addiction, Omani culture, prisoners, relapse, re-imprisonment, qualitative research, ethnography.

Keywords: illigal drugs, Prison, Omani culture lifestyle, post prison life

Procedia PDF Downloads 80
5102 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 146
5101 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 124
5100 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing

Authors: Abhay Asthana, Gyati Shilakari Asthana

Abstract:

It’s the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation was developed using component including polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) upto 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.

Keywords: sustained biodegradation, wound healing, polymers, stability

Procedia PDF Downloads 332
5099 Design and Development of Mucoadhesive Buccal Film Bearing Itraconazole

Authors: Yuvraj Singh Dangi, Kamta Prasad Namdeo, Surendra Bodhake

Abstract:

The purpose of this research was to develop and evaluate mucoadhesive films for buccal administration of itraconazole using film-forming and mucoashesive polymers. Buccal films of chitosan bearing Itraconazole were prepared by solvent casting technique. The films have been evaluated in terms of film weight, thickness, density, surface pH, FTIR, X-ray diffraction analysis, bioadhesion, swelling properties, and in vitro drug release studies. It was found that film formulations of 2 cm2 size having weight in the range of 204 ± 0.76 to 223 ± 2.09 mg and film thickness were in the range of 0.44 ± 0.11 to 0.57 ± 0.19 mm. Density of the films was found to be 0.102 to 0.126 g/ml. Drug content was found to be uniform in the range of 8.23 ± 0.07 to 8.73 ± 0.09 mg/cm2 for formulation A1 to A4. Maximum bioadhesion force was recorded for HPMC buccal films (A2) i.e. 0.57 ± 0.47 as compared to other films. In vitro residence time was in range of 1.7 ± 0.12 to 7.65 ± 0.15 h. The drug release studies show that formulations follow non-fickian diffusion. These mucoadhesive formulations could offer many advantages in comparison to traditional treatments.

Keywords: biovariability, buccal patches, itraconazole, Mucoadhesion

Procedia PDF Downloads 513
5098 Raman Spectroscopic Detection of the Diminishing Toxic Effect of Renal Waste Creatinine by Its in vitro Reaction with Drugs N-Acetylcysteine and Taurine

Authors: Debraj Gangopadhyay, Moumita Das, Ranjan K. Singh, Poonam Tandon

Abstract:

Creatinine is a toxic chemical waste generated from muscle metabolism. Abnormally high levels of creatinine in the body fluid indicate possible malfunction or failure of the kidneys. This leads to a condition termed as creatinine induced nephrotoxicity. N-acetylcysteine is an antioxidant drug which is capable of preventing creatinine induced nephrotoxicity and is helpful to treat renal failure in its early stages. Taurine is another antioxidant drug which serves similar purpose. The kidneys have a natural power that whenever reactive oxygen species radicals increase in the human body, the kidneys make an antioxidant shell so that these radicals cannot harm the kidney function. Taurine plays a vital role in increasing the power of that shell such that the glomerular filtration rate can remain in its normal level. Thus taurine protects the kidneys against several diseases. However, taurine also has some negative effects on the body as its chloramine derivative is a weak oxidant by nature. N-acetylcysteine is capable of inhibiting the residual oxidative property of taurine chloramine. Therefore, N-acetylcysteine is given to a patient along with taurine and this combination is capable of suppressing the negative effect of taurine. Both N-acetylcysteine and taurine being affordable, safe, and widely available medicines, knowledge of the mechanism of their combined effect on creatinine, the favored route of administration, and the proper dose may be highly useful in their use for treating renal patients. Raman spectroscopy is a precise technique to observe minor structural changes taking place when two or more molecules interact. The possibility of formation of a complex between a drug molecule and an analyte molecule in solution can be explored by analyzing the changes in the Raman spectra. The formation of a stable complex of creatinine with N-acetylcysteinein vitroin aqueous solution has been observed with the help of Raman spectroscopic technique. From the Raman spectra of the mixtures of aqueous solutions of creatinine and N-acetylcysteinein different molar ratios, it is observed that the most stable complex is formed at 1:1 ratio of creatinine andN-acetylcysteine. Upon drying, the complex obtained is gel-like in appearance and reddish yellow in color. The complex is hygroscopic and has much better water solubility compared to creatinine. This highlights that N-acetylcysteineplays an effective role in reducing the toxic effect of creatinine by forming this water soluble complex which can be removed through urine. Since the drug taurine is also known to be useful in reducing nephrotoxicity caused by creatinine, the aqueous solution of taurine with those of creatinine and N-acetylcysteinewere mixed in different molar ratios and were investigated by Raman spectroscopic technique. It is understood that taurine itself does not undergo complexation with creatinine as no additional changes are observed in the Raman spectra of creatinine when it is mixed with taurine. However, when creatinine, N-acetylcysteine and taurine are mixed in aqueous solution in molar ratio 1:1:3, several changes occurring in the Raman spectra of creatinine suggest the diminishing toxic effect of creatinine in the presence ofantioxidant drugs N-acetylcysteine and taurine.

Keywords: creatinine, creatinine induced nephrotoxicity, N-acetylcysteine, taurine

Procedia PDF Downloads 151
5097 Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals

Authors: Alok Shiomurti Tripathi, Ajay Kumar Timiri, Papiya Mitra Mazumder, Anil Chandewar

Abstract:

The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies.

Keywords: diabetic nephropathy, glimepiride, sildenafil citrate, pharmacokinetics, homology modeling, schrodinger

Procedia PDF Downloads 378
5096 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 146
5095 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
5094 United against Drugs: Divergent Counternarcotic Strategies of US Government Agencies in Afghanistan

Authors: Anthony George Armiger II

Abstract:

This paper focuses on the counternarcotic strategies of US government agencies in Afghanistan from 2001-2014. Despite a heavy US presence in the country, Afghanistan currently accounts for 80% of opium production worldwide and remains a key contributor to the global drug market. This paper argues that the divergent counternarcotic strategies of various US government agencies on the ground in Afghanistan are a product of the organizational differences amongst those agencies and that those differences can challenge the implementation of counternarcotics policies in Afghanistan. To gain a more in-depth perspective, this paper analyzes the counternarcotic strategies of two US government agencies in Afghanistan; the United States Department of Defense (DoD) and the Drug Enforcement Administration (DEA). Utilizing the framework of the organizational behavior model of organizational theory, this paper will highlight the varying organizational interests, opinions, standard operating procedures, and routines of both of the government agencies. The paper concludes with implications on counternarcotics, as well as the counterinsurgency in Afghanistan and provides recommendations for future research on foreign policy and counternarcotics.

Keywords: Afghanistan, drug policy, organizational theory, United States foreign policy

Procedia PDF Downloads 376
5093 Pharmacovigilance in Hospitals: Retrospective Study at the Pharmacovigilance Service of UHE-Oran, Algeria

Authors: Nadjet Mekaouche, Hanane Zitouni, Fatma Boudia, Habiba Fetati, A. Saleh, A. Lardjam, H. Geniaux, A. Coubret, H. Toumi

Abstract:

Medicines have undeniably played a major role in prolonging shelf life and improving quality. The absolute efficacy of the drug remains a lever for innovation, its benefit/risk balance is not always assured and it does not always have the expected effects. Prior to marketing, knowledge about adverse drug reactions is incomplete. Once on the market, phase IV drug studies begin. For years, the drug was prescribed with less care to a large number of very heterogeneous patients and often in combination with other drugs. It is at this point that previously unknown adverse effects may appear, hence the need for the implementation of a pharmacovigilance system. Pharmacovigilance represents all methods for detecting, evaluating, informing and preventing the risks of adverse drug reactions. The most severe adverse events occur frequently in hospital and that a significant proportion of adverse events result in hospitalizations. In addition, the consequences of hospital adverse events in terms of length of stay, mortality and costs are considerable. It, therefore, appears necessary to develop ‘hospital pharmacovigilance’ aimed at reducing the incidence of adverse reactions in hospitals. The most widely used monitoring method in pharmacovigilance is spontaneous notification. However, underreporting of adverse drug reactions is common in many countries and is a major obstacle to pharmacovigilance assessment. It is in this context that this study aims to describe the experience of the pharmacovigilance service at the University Hospital of Oran (EHUO). This is a retrospective study extending from 2011 to 2017, carried out on archived records of declarations collected at the level of the EHUO Pharmacovigilance Department. Reporting was collected by two methods: ‘spontaneous notification’ and ‘active pharmacovigilance’ targeting certain clinical services. We counted 217 statements. It involved 56% female patients and 46% male patients. Age ranged from 5 to 78 years with an average of 46 years. The most common adverse reaction was drug toxidermy. For the drugs in question, they were essentially according to the ATC classification of anti-infectives followed by anticancer drugs. As regards the evolution of declarations by year, a low rate of notification was noted in 2011. That is why we decided to set up an active approach at the level of some services where a resident of reference attended the staffs every week. This has resulted in an increase in the number of reports. The declarations came essentially from the services where the active approach was installed. This highlights the need for ongoing communication between all relevant health actors to stimulate reporting and secure drug treatments.

Keywords: adverse drug reactions, hospital, pharmacovigilance, spontaneous notification

Procedia PDF Downloads 175
5092 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 205
5091 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 194
5090 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
5089 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari

Authors: Shashank Tiwari

Abstract:

The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.

Keywords: capsule, drug delivery, dosages, solid, tablet

Procedia PDF Downloads 438
5088 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development

Authors: Poteet Frances, Glovinski Ira

Abstract:

INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.

Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation

Procedia PDF Downloads 61
5087 Cedrela Toona Roxb.: An Exploratory Study Describing Its Antidiabetic Property

Authors: Kinjal H. Shah, Piyush M. Patel

Abstract:

Diabetes mellitus is considered to be a serious endocrine syndrome. Synthetic hypoglycemic agents can produce serious side effects including hematological effects, coma, and disturbances of the liver and kidney. In addition, they are not suitable for use during pregnancy. In recent years, there have been relatively few reports of short-term side effects or toxicity due to sulphonylureas. Published figures and frequency of side effects in large series of patient range from about 1 to 5%, with symptoms severe enough to lead to the withdrawal of the drug in less than 1 to 2%. Adverse effects, in general, have been of the following type: allergic skin reactions, gastrointestinal disturbances, blood dyscrasias, hepatic dysfunction, and hypoglycemia. The associated disadvantages with insulin and oral hypoglycemic agents have led to stimulation in the research for locating natural resources showing antidiabetic activity and to explore the possibilities of using traditional medicines with proper chemical and pharmacological profiles. Literature survey reveals that the inhabitants of Abbottabad district of Pakistan use the dried leaf powder along with table salt and water orally for treating diabetes, skin allergy, wounds and as a blood purifier, where they pronounced the plant locally as ‘Nem.' The detailed phytochemical investigation of the Cedrela toona Roxb. leaves for antidiabetic activity has not been documented. Hence, there is a need for phytochemical investigation of the leaves for antidiabetic activity. The collection of fresh leaves and authentification followed by successive extraction, phytochemical screening, and testing of antidiabetic activity. The blood glucose level was reduced maximum in ethanol extract at 5th and 7th h after treatment. Blood glucose was depressed by 8.2% and 10.06% in alloxan – induced diabetic rats after treatment which was comparable to the standard drug, Glibenclamide. This may be due to the activation of the existing pancreatic cells in diabetic rats by the ethanolic extract.

Keywords: antidiabetic, Cedrela toona Roxb., phytochemical screening, blood glucose

Procedia PDF Downloads 260
5086 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
5085 Production of Nitric Oxide by Thienopyrimidine TP053

Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov

Abstract:

Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).

Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors

Procedia PDF Downloads 153
5084 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.

Keywords: real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions

Procedia PDF Downloads 386
5083 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles

Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov

Abstract:

Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.

Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release

Procedia PDF Downloads 481
5082 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship

Authors: Alya A. Arabi

Abstract:

Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.

Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole

Procedia PDF Downloads 435