Search results for: decision making units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8263

Search results for: decision making units

7723 Effective Planning of Public Transportation Systems: A Decision Support Application

Authors: Ferdi Sönmez, Nihal Yorulmaz

Abstract:

Decision making on the true planning of the public transportation systems to serve potential users is a must for metropolitan areas. To take attraction of travelers to projected modes of transport, adequately fair overall travel times should be provided. In this fashion, other benefits such as lower traffic congestion, road safety and lower noise and atmospheric pollution may be earned. The congestion which comes with increasing demand of public transportation is becoming a part of our lives and making residents’ life difficult. Hence, regulations should be done to reduce this congestion. To provide a constructive and balanced regulation in public transportation systems, right stations should be located in right places. In this study, it is aimed to design and implement a Decision Support System (DSS) Application to determine the optimal bus stop places for public transport in Istanbul which is one of the biggest and oldest cities in the world. Required information is gathered from IETT (Istanbul Electricity, Tram and Tunnel) Enterprises which manages all public transportation services in Istanbul Metropolitan Area. By using the most real-like values, cost assignments are made. The cost is calculated with the help of equations produced by bi-level optimization model. For this study, 300 buses, 300 drivers, 10 lines and 110 stops are used. The user cost of each station and the operator cost taken place in lines are calculated. Some components like cost, security and noise pollution are considered as significant factors affecting the solution of set covering problem which is mentioned for identifying and locating the minimum number of possible bus stops. Preliminary research and model development for this study refers to previously published article of the corresponding author. Model results are represented with the intent of decision support to the specialists on locating stops effectively.

Keywords: operator cost, bi-level optimization model, user cost, urban transportation

Procedia PDF Downloads 246
7722 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 75
7721 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation, assets

Procedia PDF Downloads 92
7720 How Rational Decision-Making Mechanisms of Individuals Are Corrupted under the Presence of Others and the Reflection of This on Financial Crisis Management Situations

Authors: Gultekin Gurcay

Abstract:

It is known that the most crucial influence of the psychological, social and emotional factors that affect any human behavior is to corrupt the rational decision making mechanism of the individuals and cause them to display irrational behaviors. In this regard, the social context of human beings influences the rationality of our decisions, and people tend to display different behaviors when they were alone compared to when they were surrounded by others. At this point, the interaction and interdependence of the behavioral finance and economics with the area of social psychology comes, where intentions and the behaviors of the individuals are being analyzed in the actual or implied presence of others comes into prominence. Within the context of this study, the prevalent theories of behavioral finance, which are The Prospect Theory, The Utility Theory Given Uncertainty and the Five Axioms of Choice under Uncertainty, Veblen’s Hidden Utility Theory, and the concept of ‘Overreaction’ has been examined and demonstrated; and the meaning, existence and validity of these theories together with the social context has been assessed. Finally, in this study the behavior of the individuals in financial crisis situations where the majority of the society is being affected from the same negative conditions at the same time has been analyzed, by taking into account how individual behavior will change according to the presence of the others.

Keywords: conditional variance coefficient, financial crisis, garch model, stock market

Procedia PDF Downloads 240
7719 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk

Authors: Michael Mihalicz, Aziz Guergachi

Abstract:

Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.

Keywords: decision making, emotions, prospect theory, visceral factors

Procedia PDF Downloads 149
7718 Moral Decision-Making in the Criminal Justice System: The Influence of Gruesome Descriptions

Authors: Michel Patiño-Sáenz, Martín Haissiner, Jorge Martínez-Cotrina, Daniel Pastor, Hernando Santamaría-García, Maria-Alejandra Tangarife, Agustin Ibáñez, Sandra Baez

Abstract:

It has been shown that gruesome descriptions of harm can increase the punishment given to a transgressor. This biasing effect is mediated by negative emotions, which are elicited upon the presentation of gruesome descriptions. However, there is a lack of studies inquiring the influence of such descriptions on moral decision-making in people involved in the criminal justice system. Such populations are of special interest since they have experience dealing with gruesome evidence, but also formal education on how to assess evidence and gauge the appropriate punishment according to the law. Likewise, they are expected to be objective and rational when performing their duty, because their decisions can impact profoundly people`s lives. Considering these antecedents, the objective of this study was to explore the influence gruesome written descriptions on moral decision-making in this group of people. To that end, we recruited attorneys, judges and public prosecutors (Criminal justice group, CJ, n=30) whose field of specialty is criminal law. In addition, we included a control group of people who did not have a formal education in law (n=30), but who were paired in age and years of education with the CJ group. All participants completed an online, Spanish-adapted version of a moral decision-making task, which was previously reported in the literature and also standardized and validated in the Latin-American context. A series of text-based stories describing two characters, one inflicting harm on the other, were presented to participants. Transgressor's intentionality (accidental vs. intentional harm) and language (gruesome vs. plain) used to describe harm were manipulated employing a within-subjects and a between-subjects design, respectively. After reading each story, participants were asked to rate (a) the harmful action's moral adequacy, (b) the amount of punishment deserving the transgressor and (c) how damaging was his behavior. Results showed main effects of group, intentionality and type of language on all dependent measures. In both groups, intentional harmful actions were rated as significantly less morally adequate, were punished more severely and were deemed as more damaging. Moreover, control subjects deemed more damaging and punished more severely any type of action than the CJ group. In addition, there was an interaction between intentionality and group. People in the control group rated harmful actions as less morally adequate than the CJ group, but only when the action was accidental. Also, there was an interaction between intentionality and language on punishment ratings. Controls punished more when harm was described using gruesome language. However, that was not the case of people in the CJ group, who assigned the same amount of punishment in both conditions. In conclusion, participants with job experience in the criminal justice system or criminal law differ in the way they make moral decisions. Particularly, it seems that they are less sensitive to the biasing effect of gruesome evidence, which is probably explained by their formal education or their experience in dealing with such evidence. Nonetheless, more studies are needed to determine the impact this phenomenon has on the fulfillment of their duty.

Keywords: criminal justice system, emotions, gruesome descriptions, intentionality, moral decision-making

Procedia PDF Downloads 188
7717 The Antecedent Variables of Government Financial Accounting System (SAKD) Implementation and Its Consequences: Empirical Study on the Device of Regional Coordinating Agency for Development of Cross County, City Region III Central Java Province, Indo

Authors: Dona Primasari

Abstract:

This study examines the antecedent variables of Government Financial Acccounting System (SAKD) implementation and its consequence. The antecedent variables are: decentralization of decision making, adaptation, and the manager support. The consequences are satisfaction and performance officer. This research represents the empirical test which used convenience sampling technics in data collection. The data were collected from 167 officers of local government in the Regional Coordinating Agency for Development of Cross County/City Region III Central Java Province. Data analysis used Structural Equation Model (SEM) with the AMOS 18.0 program. The result of hypothesis examination indicates that six raised hypothesis are accepted and two hypothesis are rejected.

Keywords: decentralization of decision making, adaptation officer, manager support, implementation of Government Accounting Financial System (SAKD), satisfaction and performance officer

Procedia PDF Downloads 389
7716 Disability, Technology and Inclusion: Fostering and Inclusive Pedagogical Approach in an Interdisciplinary Project

Authors: M. Lopez-Pereyra, I. Cisneros Alvarado, M. Del Socorro Lobato Alba

Abstract:

This paper aims to discuss a conceptual, pedagogical approach that foster inclusive education and that create an awareness of the use of assistive technology in Mexico. Interdisciplinary understanding of disabilities and the use of assistive technology as a frame for an inclusive education have challenged the reality of the researchers’ participation in decision-making. Drawing upon a pedagogical inquiry process within an interdisciplinary academic project that involved the sciences, design, biotechnology, psychology and education fields, this paper provides a discussion on the challenges of assistive technology and inclusive education in interdisciplinary research on disabilities and technology project. This study is frame on an educational action research design where the team is interested in integrating, disability, technology, and inclusion, theory, and practice. Major findings include: (1) the concept of inclusive education as a strategy for interdisciplinary research; (2) inclusion as a pedagogical approach that challenges the creation of assistive technology from diverse academic fields; and, (3) inclusion as a frame, problem-focused, for decision-making. The findings suggest that inclusive pedagogical approaches provide a unique insight into interdisciplinary teams on disability and assistive technology in education.

Keywords: assistive technology, inclusive education, inclusive pedagogy, interdisciplinary research

Procedia PDF Downloads 189
7715 The Role of Knowledge and Institutional Challenges to the Adoption of Sustainable Urban Drainage in Saudi Arabia: Implications for Sustainable Environmental Development

Authors: Ali Alahmari

Abstract:

Saudi Arabia is facing increasing challenges in managing urban drainage, due to a combination of factors including climate change and urban expansion. Traditional drainage systems are unable to cope with demand, resulting in flooding and damage to property. Consequently, new ways of dealing with this issue need to be found and Sustainable Urban Drainage Systems (SUDS) appear to be a possible solution. This paper suggests that knowledge is a central issue in the adoption of Sustainable Urban Drainage approaches, as revealed through qualitative research with representative officials and professionals from key government departments and organisations in Riyadh. Semi-structured interviews were conducted with twenty-six participants. The interviews explored the challenges of adopting sustainable drainage approaches, and grounded theory analysis was used to examine the role of knowledge. However, a number of barriers have been identified with regard to the adoption of sustainable drainage approaches, such as the marginal status of sustainability in drainage decisions; lack of technical standards for other unconventional drainage solutions, and lack of consideration by decision makers of contributions from environmental and geographical studies. Due to centralisation, decision-making processes are complex and time-consuming, resulting in the discouragement of the adoption of new knowledge and approaches. Stakeholders with knowledge of sustainable approaches are often excluded from the hierarchical system of urban planning and drainage management. In addition, the multiplicity of actors involved in the implementation of the drainage system, as well as the different technical standards involved, often causes problems around coordination and cooperation. Although those with procedural and explicit knowledge have revealed a range of opportunities, such as a significant increase in government support for rainwater drainage in urban areas, they also identified a number of obstacles. These are mainly related to the lack of specialists in sustainable approaches, and a reluctance to involve external experts. Therefore, recommendations for overcoming some of these challenges are presented, which include enhancing the decision-making process through applying decentralisation and promoting awareness of sustainability through establishing educational and outreach programmes. This may serve to increase knowledge and facilitate the adoption of sustainable drainage approaches to promote sustainable development in the context of Saudi Arabia.

Keywords: climate change, decision-making processes, new knowledge and approaches, resistance to change, Saudi Arabia, SUDS, urban expansion

Procedia PDF Downloads 149
7714 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique

Authors: Konstantinos Tolidis

Abstract:

The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.

Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods

Procedia PDF Downloads 347
7713 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria

Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe

Abstract:

Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.

Keywords: data portal, data infrastructure, open source, sustainability

Procedia PDF Downloads 98
7712 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 30
7711 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
7710 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions

Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock

Abstract:

Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.

Keywords: decision support system, event-sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine

Procedia PDF Downloads 127
7709 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability

Procedia PDF Downloads 223
7708 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
7707 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
7706 Accountants and Anti-Money Laundering Compliance in the Real Estate Sector

Authors: Mark E. Lokanan, Liz Lee

Abstract:

This paper aims to examine the role of accountants as gatekeepers in anti-money laundering compliance in real estate transactions. The paper seeks to answer questions on ways in which accountants are involved in real estate transactions and mandatory compliance with regulatory authorities in Canada. The data for the study came from semi-structured interviews with accountants, lawyers, and government officials. Preliminary results reveal that there is a conflict between accountants’ obligation to disclose and loyalty to their clients. Accountants often do not see why they are obligated to disclose their clients' information to government agencies. The importance of the client in terms of the amount of revenue contributed to the accounting firm also plays a significant role in accountants' reporting decision-making process. Although the involvement of accountants in real estate purchase and sale transactions is limited to lawyers or notaries, they are often involved in designing financing schemes, which may involve money laundering activities. The paper is of wider public policy interests to both accountants and regulators. It is hard not to see Chartered Professional Accountant (CPA) Canada and government regulators using the findings to better understand the decision-making processes of accountants in their reporting practices to regulatory authorities.

Keywords: money laundering, real estate, disclosure, legislation, compliance

Procedia PDF Downloads 231
7705 The Material-Process Perspective: Design and Engineering

Authors: Lars Andersen

Abstract:

The development of design and engineering in large construction projects are characterized by an increased degree of flattening out of formal structures, extended use of parallel and integrated processes (‘Integrated Concurrent Engineering’) and an increased number of expert disciplines. The integration process is based on ongoing collaborations, dialogues, intercommunication and comments on each other’s work (iterations). This process based on reciprocal communication between actors and disciplines triggers value creation. However, communication between equals is not in itself sufficient to create effective decision making. The complexity of the process and time pressure contribute to an increased risk of a deficit of decisions and loss of process control. The paper refers to a study that aims at developing a resilient decision-making system that does not come in conflict with communication processes based on equality between the disciplines in the process. The study includes the construction of a hospital, following the phases design, engineering and physical building. The Research method is a combination of formative process research, process tracking and phenomenological analyses. The study tracked challenges and problems in the building process to the projection substrates (drawing and models) and further to the organization of the engineering and design phase. A comparative analysis of traditional and new ways of organizing the projecting made it possible to uncover an implicit material order or structure in the process. This uncovering implied a development of a material process perspective. According to this perspective the complexity of the process is rooted in material-functional differentiation. This differentiation presupposes a structuring material (the skeleton of the building) that coordinates the other types of material. Each expert discipline´s competence is related to one or a set of materials. The architect, consulting engineer construction etc. have their competencies related to structuring material, and inherent in this; coordination competence. When dialogues between the disciplines concerning the coordination between them do not result in agreement, the disciplines with responsibility for the structuring material decide the interface issues. Based on these premises, this paper develops a self-organized expert-driven interdisciplinary decision-making system.

Keywords: collaboration, complexity, design, engineering, materiality

Procedia PDF Downloads 221
7704 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic

Procedia PDF Downloads 335
7703 Exploring Perceptions of Non-Energy Benefits and Energy Efficiency Investment in the Malaysian Industrial Sector

Authors: Siti Noor Baiti Binti Mustafa

Abstract:

Energy management studies regarding energy efficiency investments in Malaysia has yet to address the lack of empirical research that examines pro- sustainability behavior of managers in the industrial sector and how it influences energy efficiency investment decision-making. This study adopts the Theory of Planned Behavior (TPB) to examine the relationship between personal attitude, subjective norms, and perceived behavioral control (PBC), the intention of energy efficiency investments, and how perceptions of Non-Energy Benefits (NEB) influence these intentions among managers in the industrial sector in Malaysia. Managers from various sub-sectors in the industrial sector were selected from a sample of companies that are participants of the Government-led program named the Energy Audit Conditional Grant (EACG) that aimed to promote energy efficiency. Data collection was conducted through an online semi-structured, open-ended questionnaire and then later interviewed. The results of this explorative sequential qualitative study showed that perceived behavioral control was a significant predictor of energy efficiency investment intentions as compared to factors such as attitude and subjective norms. The level of awareness and perceptions towards NEB further played a significant factor in influencing energy efficiency investment decision-making as well. Various measures and policy recommendations are provided together with insights on factors that influence decision-makers intention to invest in energy efficiency, whilst new knowledge on NEB perceptions will be useful to enhance the attractiveness of energy-efficient investments.

Keywords: energy efficiency investments, non-energy benefits, theory of planned behavior, personal attitude, subjective norms, perceived behavioral control, Malaysia industrial sector

Procedia PDF Downloads 126
7702 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 258
7701 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 144
7700 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505
7699 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 193
7698 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools

Authors: Raymond K. Jonkers

Abstract:

The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.

Keywords: management, systems, performance, scorecard

Procedia PDF Downloads 322
7697 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 152
7696 The Restrictions of the Householder’s ‘Double Two-Thirds Principles’ in Decision-Making for Elevators Addition to Existing Condominium

Authors: Haifeng Shi, Kun Song, Yili Zhao

Abstract:

In China, with the extensive promotion of the ‘aging in place’ pension policy as the background, most of the elders will choose to remain in their current homes and communities, finding out of preference or necessity that they will need to remodel their homes to fit their changing needs. This generation elder born in the 1960s to 1970s almost live in the same form of housing-condominium built from 1982 to 2012. Based on the survey of existing multi-family housing, especially in Tianjin, it is found that the current ‘double two-thirds principles’ is becoming the threshold for modification to existing house, particularly in the project of elevators addition to existing condominium (built from 1982 to 2016 without elevators below 6 floors according to the previous building code). Firstly, this article concludes the local policies of elevator addition nationwide, most of which has determined the importance and necessity of the community-based self-organization principle in the operation of the elevator addition. Secondly, by comparing the three existing community management systems (owners' congress, property management system and community committee) in instances, find that the community-based ‘two-thirds’ principle is not conducive to implement for multi-owned property renovation in the community or common accessibility modification in the building. However, analysis the property and other community management related laws, pointing out the shortcomings of the existing community-based ‘two-thirds’ decision-making norms. The analyzation showed that the unit-based and ‘100% principle’ method is more capable of common accessibility in the condominium in China. Differing from existing laws, the unit-based principle will be effective for the process of decision-making and ‘100% principle’ will protect closely profit-related householders for condominium modification in the multi-owned area. These three aspects of the analysis suggest that the establishment of the unit-based self-organization mechanism is a preferred and inevitable method to solve the problem of elevators addition to the existing condominium in China.

Keywords: aging in place, condominium, modification, multi own

Procedia PDF Downloads 148
7695 An Analysis of Gender Competencies of Project Managers in National Capital Region, Philippines using the Mann-Whitney U Test

Authors: Ryan Vincent Teodoro, Adrian Paul Virador, Jan Christopher Cardenas

Abstract:

In the field of construction, managerial positions are completely dominated by males. The researchers conducted this study to see if there is a significant difference between the competencies of male and female project managers in the construction field. To see if there is a significant difference, they subdivided the competency of project managers into three components; decision making, organizing skills, and resiliency. The researchers conducted a five-point Likert scale survey of 28 project managers in the construction field, 18 of them are males and 10 are females. The researchers used Cronbach’s alpha to translate the raw scores of the respondents into competency scores. Then, the competency scores are analyzed using the Mann-Whitney U Test to see if there is a significant difference between the male’s and female’s competency scores. A p-value of 0.808 was calculated, which is greater than 0.05, which means that the null hypothesis is accepted. Therefore, the researchers concluded that there is no significant difference between the competencies of male and female project managers in terms of decision making, organizing skills, and resiliency in the construction field in the National Capital Region, Philippines.

Keywords: competency, resiliency, project managers, Mann-Whitney U test

Procedia PDF Downloads 133
7694 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332