Search results for: code properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10007

Search results for: code properties

9467 Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector

Authors: Reema Jain

Abstract:

Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid.

Keywords: nanofluids, nanoparticles, heat transfer, solar collector

Procedia PDF Downloads 299
9466 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria

Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero

Abstract:

Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.

Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria

Procedia PDF Downloads 317
9465 Use of Oral Communication Strategies: A Study of Bangladeshi EFL Learners at the Graduate Level

Authors: Afroza Akhter Tina

Abstract:

This paper reports on an investigation into the use of specific types of oral communication strategies, namely ‘topic avoidance’, ‘message abandonment’, ‘code-switching’, ‘paraphrasing’, ‘restructuring’, and ‘stalling’ by Bangladeshi EFL learners at the graduate level. It chiefly considers the frequency of using these strategies as well as the students and teachers attitudes toward such uses. The participants of this study are 66 EFL students and 12 EFL teachers of Jahangirnagar University. Data was collected through questionnaire, oral interview, and classroom observation form. The findings reveal that the EFL students tried to employ all the strategies to various extents due to the language difficulties they encountered in their oral English performance. Among them, the mostly used strategy was ‘stalling’ or the use of fillers, followed by ‘code-switching’. The least used strategies were ‘topic avoidance’, ‘restructuring’, and ‘paraphrasing’. The findings indicate that the use of such strategies was related to the contexts of situation and data-elicitation tasks. It also reveals that the students were not formally trained to use the strategies though the majority of the teachers and students acknowledge them as helpful in communication. Finally the study suggests that an awareness of the nature and functions of these strategies can contribute to the overall improvement of the learners’ communicative competence in spoken English.

Keywords: communicative strategies, competency, attitude, frequency

Procedia PDF Downloads 387
9464 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 135
9463 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass

Authors: Miroslava Zelinkova, Marcela Ondova

Abstract:

Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.

Keywords: alkali activation, geopolymers, fly ash, particle fineness

Procedia PDF Downloads 203
9462 Determination of Geotechnical Properties of Travertine Lithotypes in Van-Turkey

Authors: Ali Ozvan, Ismail Akkaya, Mucip Tapan

Abstract:

Travertine is generally a weak or medium strong rock, and physical, mechanical and structural properties of travertines are direct impacts on geotechnical studies. New settlement areas were determined on travertine units after two destructive earthquakes which occurred on October 23rd, 2011 (M=7.1) and November 9th, 2011 (M=5.6) in Tabanlı and Edremit districts of Van province in Turkey, respectively. In the study area, the travertines have different lithotype and engineering properties such as strong crystalline crust, medium strong shrub, and weak reed which can affect mechanical and engineering properties of travertine and each level have different handicaps. Travertine has a higher strength when compared to the soil ground; however, it can have different handicaps such as having poor rock mass, karst caves and weathering alteration. Physico-mechanical properties of travertine in the study area are determined by laboratory tests and field observations. Uniaxial compressive strength (UCS) values were detected by indirect methods, and the strength map of different lithotype of Edremit travertine was created in order to define suitable settlement areas. Also, rock mass properties and underground structure were determined by bore holes, field studies, and geophysical method. The reason of this study is to investigate the relationship between lithotype and physicomechanical properties of travertines. According to the results, lithotype has an effect on physical, mechanical and rock mass properties of travertine levels. It is detected by several research methods that various handicaps may occur on such areas when the active tectonic structure of the area is evaluated along with the karstic cavities within the travertine and different lithotype qualities.

Keywords: travertine, lithotype, geotechnical parameters, Van earthquake

Procedia PDF Downloads 214
9461 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges

Authors: Yi F. Wu, Ai Q. Li, Hao Wang

Abstract:

Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.

Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size

Procedia PDF Downloads 162
9460 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 156
9459 The Right to State Lands: A Case Study of a Squatter Community in Egypt

Authors: Salwa Salman

Abstract:

On February 2016, Egypt’s President Abdel Fattah Al-Sisi ordered the former Prime Minister, Ibrahim Mehleb, to establish a committee responsible for retrieving looted state lands or providing squatters with land titles according to their individual cases. The specificity of desert lands emerges from its unique position in both Islamic law and Egypt’s Civil Code. In Egypt, desert lands can be transferred to private ownership through peaceful occupation and cultivation. This study explores the (re-) conceptualization of land rights, state territoriality, and sovereignty as a part of an emerging narrative on informal land tenure. Through the lens of an informal settlement, the study employs methodological insights from studies in the anthropology of development and their interpretation of Foucauldian discourse analysis to examine official representations on squatting over state lands and put them in conversation with individual narratives on land ownership and dispossession. It also employs Bruno Latour’s actor-network theory to explore the development of social networks through primary land contracts and informal local resource management.

Keywords: State lands, squatter community, Islamic law, Egypt’s Civil Code

Procedia PDF Downloads 146
9458 Effect of Hot Equal Channel Angular Pressing Process on Mechanical Properties of Commercial Pure Titanium

Authors: Seyed Ata Khalkhkali Sharifi, Gholamhossein Majzoubi, Farhad Abroush

Abstract:

Developing mechanical properties of pure titanium has been reviewed in this paper by using ECAP process. At the first step of this article, the experimental samples were prepared as mentioned in the standards. Then pure grade 2 Ti was processed via equal-channel angular pressing (ECAp) for 2 passes following route-A at 400°C. After processing, the microstructural evolution, tensile, fatigue, hardness properties and wear behavior were investigated. Finally, the effect of ECAP process on these samples was analyzed. The results showed improvement in strength values with a slight decrease in ductility. The analysis on 30 points within the sample showed hardness increase in each pass. Also, it was concluded that fatigue properties were increased too.

Keywords: equal-channel angular pressing, titanium, mechanical behavior, engineering materials and applications

Procedia PDF Downloads 244
9457 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Authors: Lixin Tian, Wei Xue

Abstract:

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code

Procedia PDF Downloads 115
9456 Spin-Polarized Structural, Electronic and Magnetic Properties of Intermetallic Dy2Ni2Pb from Computational Study

Authors: O. Arbouche, Y. Benallou, K. Amara

Abstract:

We report a first-principles study of structural, electronic and magnetic properties of ternary plumbides (rare earth-transition metal-Plumb) Dy2Ni2Pb crystallizes with the orthorhombic structure of the Mn2AlB2 type (space group Cmmm), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbital method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, total densities of states and magnetic properties. The calculated total magnetic moment is found to be equal to 9.52 μB.

Keywords: spin-polarized, magnetic properties, Dy2Ni2Pb, Density functional theory

Procedia PDF Downloads 274
9455 Case Study: The Impact of Creative Play on Children's Bilingualism

Authors: Mingxi Xiao

Abstract:

This case study focused on a bilingual child named Emma and her play. Emma was a four-year-old girl born in Australia while her parents were both Chinese. Emma could speak fluent English, while her Mandarin was not as good as her spoken English. With the research question to figure out whether creative play had an impact on children’s bilingualism, this case study mainly used the anecdotes method to observe Emma’s play and this report presented five observations of Emma, describing detailed information about her play and recording her language use. Based on Emma’s interests and daily activities, this case study chose her creative play for observation, which incorporates a whole range of activities from dancing to drawing, as well as playing instruments. From the five observations, it could be seen that Emma often mixed languages to help her express her meaning. It could be seen that Emma made an effort to use her bilingualism in her creative play. In other words, play encouraged Emma to use the two languages. In conclusion, the observations with Emma showed that although her Mandarin was not good enough, she displayed confidence in speaking both languages and had gradually shifted from mixing languages to code-switching. Recommendations were provided to support Emma’s bilingual abilities for further development in the end.

Keywords: bilingual, case study, code-switching, creative play, early childhood

Procedia PDF Downloads 121
9454 Design of Advanced Materials for Alternative Cooling Devices

Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera

Abstract:

More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.

Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration

Procedia PDF Downloads 185
9453 The Applications of Wire Print in Composite Material Research and Fabrication Process

Authors: Hsu Yi-Chia, Hoy June-Hao

Abstract:

FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.

Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing

Procedia PDF Downloads 113
9452 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 211
9451 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 52
9450 Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency

Authors: Yih-Chien Chen, Yu-Cheng You

Abstract:

The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h.

Keywords: ceramics, sintering, microwave dielectric properties, La2MoO6

Procedia PDF Downloads 269
9449 Composite Panels from Under-Utilized Wood and Agricultural Fiber Resources

Authors: Salim Hiziroglu

Abstract:

Rice straw, jute, coconut fiber, oil palm, bagasse and bamboo are some of agricultural resources that can be used to produce different types of value-added composite panels including particleboard and medium density fiberboard (MDF). Invasive species such as Eastern red cedar in South Western states in the USA would also be considered as viable raw material to manufacture above products. The main objective of this study was to investigate both physical and mechanical properties of both structural and non-structural panels manufactured from underutilized and agricultural species. Eastern red cedar, bamboo and rice straw were used to manufacture experimental panels. Properties of such samples including bending, internal bond strength, thickness swelling, density profiles and surface roughness were evaluated. Panels made 100% bamboo had the best properties among the other samples. Having rice straw in particleboard and medium density fiberboard panels reduced overall properties of the samples. Manufacturing interior sandwich type of panels having fibers on the face layers while particle of the same type of materials in the core improved their surface quality. Based on the findings of this work such species could have potential to be used as raw material to manufacture value-added panels with accepted properties.

Keywords: composite panels, wood and non-wood fibers, mechanical properties, bamboo

Procedia PDF Downloads 411
9448 Appearance-Based Discrimination in a Workplace: An Emerging Problem for Labor Law Relationships

Authors: Irmina Miernicka

Abstract:

Nowadays, dress codes and widely understood appearance are becoming more important in the workplace. They are often used in the workplace to standardize image of an employer, to communicate a corporate image and ensure that customers can easily identify it. It is also a way to build professionalism of employer. Additionally, in many cases, an employer will introduce a dress code for health and safety reasons. Employers more often oblige employees to follow certain rules concerning their clothing, grooming, make-up, body art or even weight. An important research problem is to find the limits of the employer's interference with the external appearance of employees. They are primarily determined by the two main obligations of the employer, i. e. the obligation to respect the employee's personal rights and the principle of equal treatment and non-discrimination in employment. It should also be remembered that the limits of the employer's interference will be different when certain rules concerning the employee's appearance result directly from the provisions of laws and other acts of universally binding law (workwear, official clothing, and uniform). The analysis of this issue was based on literature and jurisprudence, both domestic and foreign, including the U.S. and European case law, and led the author to put forward a thesis that there are four main principles, which will protect the employer from the allegation of discrimination. First, it is the principle of adequacy - the means requirements regarding dress code must be appropriate to the position and type of work performed by the employee. Secondly, in accordance with the purpose limitation principle, an employer may introduce certain requirements regarding the appearance of employees if there is a legitimate, objective justification for this (such as work safety or type of work performed), not dictated by the employer's subjective feelings and preferences. Thirdly, these requirements must not place an excessive burden on workers and be disproportionate in relation to the employer's objective (principle of proportionality). Fourthly, the employer should also ensure that the requirements imposed in the workplace are equally burdensome and enforceable from all groups of employees. Otherwise, it may expose itself to grounds of discrimination based on sex or age. At the same time, it is also possible to differentiate the situation of some employees if these differences are small and reflect established habits and traditions and if employees are obliged to maintain the same level of professionalism in their positions. Although this subject may seem to be insignificant, frequent application of dress codes and increasing awareness of both employees and employers indicate that its legal aspects need to be thoroughly analyzed. Many legal cases brought before U.S. and European courts show that employees look for legal protection when they consider that their rights are violated by dress code introduced in a workplace.

Keywords: labor law, the appearance of an employee, discrimination in the workplace, dress code in a workplace

Procedia PDF Downloads 110
9447 The Mechanical and Comfort Properties of Cotton/Micro-Tencel Lawn Fabrics

Authors: Abdul Basit, Shahid Latif, Shah Mehmood

Abstract:

Lawn fabric was usually prepared from originally of linen but at present chiefly cotton. Lawn fabric is worn in summer. Cotton Lawn is a lightweight pure cloth which is heavier than voile. It is so fine that it is somewhat transparent. It is soft and superb to wear thus it is perfect for summer clothes or for regular wear in hotter climates. Tencel (Lyocell) fiber is considered as the fiber of the future as Tencel fibers are absorbent, soft, and extremely strong when wet or dry, and resistant to wrinkles. Fibers are more absorbent than cotton, softer than silk and cooler than linen. High water absorption and water vapor absorption give more heat capacity and heat balancing effect for thermo-regulation. This thermo-regulation is analogous with the action of phase-change-materials. The thermal wear properties result in cool and dry touch that gives cooling effect in sportswear, and the warmth properties (when used as an insulation layer). These cooling and warming effects are adaptive to the environment giving comfort in a broad range of climatic conditions. In this work, single yarns of Ne 80s were made. Yarns were made from conventional ring spinning. Different yarns of 100% cotton, 100% micro-Tencel and Cotton:micro-Tencel blends (67:33, 50:50:33:67) were made. The mechanical and comfort properties of the woven fabrics were compared. The mechanical properties include the tensile and tear strength, bending length, pilling and abrasion resistance whereas comfort properties include the air permeability, moisture management and thermal resistance. It is found that as the content of the micro-Tencel is increased, the mechanical and comfort properties of the woven fabric are also increased.

Keywords: combed cotton, comfort properties , mechanical properties, micro-Tencel

Procedia PDF Downloads 293
9446 Assessment of Golestan Dam Break Using Finite Volume Method

Authors: Ebrahim Alamatian, Seyed Mehdi Afzalnia

Abstract:

One of the most vital hydraulic structures is the dam. Regarding the unrecoverable damages which may occur after a dam break phenomenon, analyzing dams’ break is absolutely essential. GOLESTAN dam is located in the western South of Mashhad city in Iran. GOLESTAN dam break might lead to severe problems due to adjacent tourist and entertainment areas. In this paper, a numerical code based on the finite volume method was applied for assessing the risk of GOLESTAN dam break. As to this issue, first, a canal with a triangular barrier was modeled so as to verify the capability of the concerned code. Comparing analytical, experimental and numerical results showed that water level in the model results is in a good agreement with the similar water level in the analytical solutions and experimental data. The results of dam break modeling are revealed that two of the bridges, that are PARTOIE and NAMAYESHGAH, located downstream in the flow direction, are at risk following the potential GOLESTAN dam break. Therefore, the required times to conduct the precautionary measures at bridges were calculated at about 12 and 21 minutes, respectively. Thus, it is crucial to announce people about the possible risks of the dam break in order to decrease likely losses.

Keywords: numerical model, shallow water equations, GOLESTAN dam break, dry and wet beds modeling

Procedia PDF Downloads 130
9445 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.

Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan

Procedia PDF Downloads 389
9444 Comparison for Some Elastic and Mechanical Properties of Plutonium Dioxide

Authors: M. Guler, E. Guler

Abstract:

We report some elastic parameters of cubic fluorite type neptunium dioxide (NpO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other relevant elastic parameters were also calculated during research. After calculations, we have compared our results with the available theoretical data. Our results agree well with the previous theoretical findings of the considered quantities of NpO2.

Keywords: NpO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 312
9443 Fracture Properties Investigation of Artocarpus odoratissimus Composite with Polypropylene (PP)

Authors: M. Kamal M. Shah, Al Fareez Bin Aslie, O. Irma Wani, J. Sahari

Abstract:

Wood plastic composites (WPC) were made using matrix of polypropylene (PP) thermoplastic resin with wood fiber from Artocarpus Odoratissimus as filler. The purpose of this project is to investigate the fracture properties of Artocarpus odoratissimus composite with PP. The WPC were manufactured by hot-press technique with varying formulations which are 10:0 (100% pure PP), 50:50 (40 g of wood fiber and 40 g of PP) and 60:40 (48 g of wood fiber and 32 g of PP). The mechanical properties were investigated. Tensile and flexural were carried out according to ASTM D 638 and ASTM D 790. The results were analysed to calculate the tensile strength. Tensile strength at break is ranged from 13.2 N/mm2 to 21.7 N/mm2 while, the flexural strength obtained is varying from 14.7 N/mm2 to 31.1 N/mm2. The results of the experiment showed that tensile and flexural properties of the composite were increased with the adding of wood fiber material. Finally, the Scanning Electron Microscope (SEM), have been done to study the fracture behavior of the WPC specimens.

Keywords: Artocarpus odoratissimus, polypropylene thermoplastic, wood fiber, WPC

Procedia PDF Downloads 373
9442 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.

Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties

Procedia PDF Downloads 62
9441 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: isolated footings, multi-storeys building, PLAXIS 2D, slope

Procedia PDF Downloads 232
9440 Carbon Capture: Growth and Development of Membranes in Gas Sequestration

Authors: Sreevalli Bokka

Abstract:

Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.

Keywords: membranes, filtration, separations, polymers, carbon capture

Procedia PDF Downloads 48
9439 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 75
9438 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles

Authors: J. P. Borah, R. D. Raland

Abstract:

Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.

Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study

Procedia PDF Downloads 144