Search results for: body parameters
11670 Pretherapy Initial Dosimetry Results in Prostat Cancer Radionuclide Therapy with Lu-177-PSMA-DOTA-617
Authors: M. Abuqebitah, H. Tanyildizi, N. Yeyin, I. Cavdar, M. Demir, L. Kabasakal
Abstract:
Aim: Targeted radionuclide therapy (TRT) is an increasingly used treatment modality for wide range of cancers. Presently dosimetry is highly required either to plan treatment or to ascertain the absorbed dose delivered to critical organs during treatment. Methods and Materials: The study comprised 7 patients suffered from prostate cancer with progressive disease and candidate to undergo Lu-177-DOTA-617 therapy following to PSMA- PET/CT imaging for all patients. (5.2±0.3 mCi) was intravenously injected. To evaluate bone marrow absorbed dose 2 cc blood samples were withdrawn in short variable times (3, 15, 30, 60, 180 minutes) after injection. Furthermore, whole body scans were performed using scintillation gama camera in 4, 24, 48, and 120 hours after injection and in order to quantify the activity taken up in the body, kidneys , liver, right parotid, and left parotid the geometric mean of anterior and posterior counts were determined through ROI analysis, after that background subtraction and attenuation correction were applied using patients PSMA- PET/CT images taking in a consideration: organ thickness, body thickness, and Hounsfield unites from CT scan. OLINDA/EXM dosimetry program was used for curve fitting, residence time calculation, and absorbed dose calculations. Findings: Absorbed doses of bone marrow, left kidney, right kidney, liver, left parotid, right parotid, total body were 1.28±0.52, 32.36±16.36, 32.7±13.68, 10.35±3.45, 38.67±21.29, 37.55±19.77, 2.25±0.95 (mGy/mCi), respectively. Conclusion: Our first results clarify that Lu-177-DOTA-617 is safe and reliable therapy as there were no complications seen. In the other hand, the observable variation in the absorbed dose of the critical organs among the patients necessitate patient-specific dosimetry approach to save body organs and particularly highly exposed kidneys and parotid gland.Keywords: Lu-177-PSMA, prostate cancer, radionuclide therapy
Procedia PDF Downloads 48011669 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 8911668 Influence of Solenoid Configuration on Electromagnetic Acceleration of Plunger
Authors: Shreyansh Bharadwaj, Raghavendra Kollipara, Sijoy C. D., R. K. Mittal
Abstract:
Utilizing the Lorentz force to propel an electrically conductive plunger through a solenoid represents a fundamental application in electromagnetism. The parameters of the solenoid significantly influence the force exerted on the plunger, impacting its response. A parametric study has been done to understand the effect of these parameters on the force acting on the plunger. This study is done to determine the most optimal combination of parameters to obtain the fast response. Analysis has been carried out using an algorithm capable of simulating the scenario of a plunger undergoing acceleration within a solenoid. Authors have conducted an analysis focusing on several key configuration parameters of the solenoid. These parameters include the inter-layer gap (in the case of a multi-turn solenoid), different conductor diameters, varying numbers of turns, and diverse numbers of layers. Primary objective of this paper is to discern how alterations in these parameters affect the force applied to the plunger. Through extensive numerical simulations, a dataset has been generated and utilized to construct informative plots. These plots provide visual representations of the relationships between the solenoid configuration parameters and the resulting force exerted on the plunger, which can further be used to deduce scaling laws. This research endeavors to offer valuable insights into optimizing solenoid configurations for enhanced electromagnetic acceleration, thereby contributing to advancements in electromagnetic propulsion technology.Keywords: Lorentz force, solenoid configuration, electromagnetic acceleration, parametric analysis, simulation
Procedia PDF Downloads 4711667 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications
Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker
Abstract:
This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring
Procedia PDF Downloads 40311666 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna
Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh
Abstract:
Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation
Procedia PDF Downloads 20411665 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime
Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni
Abstract:
The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.Keywords: base drag, bluff body, splitter plate, vortex flow, ANSYS, fluent
Procedia PDF Downloads 18011664 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames
Authors: M. Blokh
Abstract:
Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching
Procedia PDF Downloads 37511663 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme
Authors: Arun Kumar Yadav, Badam Singh Kushvah
Abstract:
In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control
Procedia PDF Downloads 18911662 Evaluation of Hypolipidemic Effect of Leaf Essential Oil of Citrus sinensis in Alloxan- Induced Diabetic Rats
Authors: Omolola Soji-Omoniwa, Babasoji Omoniwa
Abstract:
The hypolipidemic effect of leaf essential oil of Citrus sinensis in alloxan–induced diabetic rats was evaluated. Forty albino rats (150–200 g) were randomly selected into 4 groups of 10 rats each, representing Normal Control, Diabetic Control, Diabetic treated with 14.2 mg/kg body weight Metformin and Diabetic treated with 110 mg/kg body weight leaf essential oil of Citrus sinensis. Diabetes was induced in the animals by intraperitoneal administration of single dose alloxan monohydrate (150 mg/kg body weight). The leaf essential oil of Citrus sinensis was administered every other day to the Diabetic rats for a period of 15 days. The effects of leaf essential oil on High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Trigylcerides and Cholesterol were evaluated. A significant reduction (p <0.05) in LDL, Triglycerides and cholesterol levels and a significant increase (p<0 .05) in HDL was observed. Leaf essential oil of Citrus sinensis possesses hypolipidemic properties.Keywords: Citrus sinensis, Diabetes mellitus, hypolipidemic, leaf essential oil
Procedia PDF Downloads 44611661 Gender Differences in Morphological Predictors of Running Ability: A Comprehensive Analysis of Male and Female Athletes in Cape Coast Metropolis, Ghana
Authors: Stephen Anim, Emmanuel O. Sarpong, Daniel Apaak
Abstract:
This study investigates the relationship between morphological predictors and running ability, emphasizing gender-specific variations among male and female athletes in Cape Coast Metropolis (CCM), Ghana. The dynamic interplay between an athlete's physique and their performance capabilities holds particular relevance in the realm of sports science, influencing training methodologies and talent identification processes. The research aims to contribute comprehensive insights into the morphological determinants of running proficiency, with a specific focus on the local athletic community in Cape Coast Metropolis. Utilizing a correlational research design, a thorough analysis of morphological features, encompassing 22 morphological features including body weight, 6 measurements related to body length, 7 body girth, and knee diameter, and 7 skinfold measurements against 50m dash, among male and female athletes, was conducted. The study involved 420 athletes both male (N=210) and female (N=210) aged 16-22 from 10 Senior High Schools (SHS) in the Cape Coast Metropolis, providing a representative sample of the local athletic community. The collected data were statistically analysed using means and standard deviation, and stepwise multiple regression to determine how morphological variables contribute to and predict running proficiency outcomes. The investigation revealed that athletes from Senior High Schools (SHS) in Cape Coast Metropolis (CCM) exhibit well-developed physiques and sufficient fitness levels suitable for overall athletic performance, taking into account gender differences. Moreover, the findings suggested that approximately 77% of running ability could be attributed to morphological factors, leading to diverse predictive models for male and female athletes within SHS in CCM, Ghana. Consequently, these formulated equations hold promise for predicting running ability among young athletes, particularly in the context of SHS environments.Keywords: body fat, body girth, body length, morphological features, running ability, senior high school
Procedia PDF Downloads 6711660 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee
Authors: Lior B. Navon
Abstract:
The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.Keywords: biopower, female ejaculation, new media, bodily knowledge
Procedia PDF Downloads 15711659 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 40711658 Fiber Release from Fabrics with Various Weave Parameters and Finishing Treatments during Washing and Their Marine Biodegradation
Authors: Seoyoun Kim, Chunghee Park
Abstract:
Microplastics have recently become an issue due to their potentially harmful effects on the marine environment and the human body. The purpose of this study is to investigate the correlation of fiber emissions during the home laundering with the fabric parameters such as yarn density, warp/weft density, and weave structure. Also, the effect of finishing treatments such as reactive dyeing, water-repellent finish, peach skin finish on fiber emissions was evaluated. Furthermore, we studied the biodegradability of fibers in the marine environment compared to those in soil burial and the impact of finishing treatment on the biodegradability. Biodegradability was evaluated by measuring BOD values and tensile strength reduction. The results showed that more fibers were released in the thicker yarn, lower weave density. Also, a weave structure which has less compactness, released more fibers. Peach skin finish with microfibers exposed on the surface caused more fiber release, whereas water-repellent finish reduced the fiber emission. In addition, the biodegradability of the fabrics submerged in the marine environment were lower compared with those buried in the soil. Also, the water-repellent fabric was less biodegradable than the untreated one. Further research is suggested considering the fabrics with various chemical components or geometry and their fouling behavior in the marine environment.Keywords: biodegradation, fibers, microplastic, pollution
Procedia PDF Downloads 13711657 Effect of Synthetic L-Lysine and DL-Methionine Amino Acids on Performance of Broiler Chickens
Authors: S. M. Ali, S. I. Mohamed
Abstract:
Reduction of feed cost for broiler production is at most importance in decreasing the cost of production. The objectives of this study were to evaluate the use of synthetic amino acids (L-lysine – DL-methionine) instead of super concentrate and groundnut cake versus meat powder as protein sources. A total of 180 male broiler chicks (Cobb – strain) at 15 day of age (DOA) were selected according to their average body weight (380 g) from a broiler chicks flock at Elbashair Farm. The chicks were randomly divided into six groups of 30 chicks. Each group was further sub divided into three replicates with 10 birds. Six experimental diets were formulated. The first diet contained groundnut cake and super concentrate as the control (GNC + C); in the second diet, meat powder and super concentrate (MP + C) were used. The third diet contained groundnut cake and amino acids (GNC + AA); the forth diet contained meat powder and amino acids (MP + AA). The fifth diet contained groundnut cake, meat powder and super concentrate (GNC + MP + C) and the sixth diet contained groundnut cake, meat powder and amino acids (GNC + MP + AA). The formulated rations were randomly assigned for the different sub groups in a completely randomized design of six treatments and three replicates. Weekly feed intake, body weight and mortality were recorded and body weight gain and feed conversion ratio were calculated. At the end of the experiment (49 DOA), nine birds from each treatment were slaughtered. Live body weight, carcass weight, head, shank, and some internal organs (gizzard, heart, liver, small intestine, and abdominal fat pad) weights were taken. For the overall experimental period the (GNC + C +MP) consumed significantly (P≤0.01) the highest cumulative feed while the (MP + AA) group consumed the lowest amount of feed. The (GNC + C) and the (GNC + AA) groups had the heaviest live body weight while (MP + AA) had the lowest live body weight. The overall FCR was significantly (P≤0.01) the best for (GNC + AA) group while the (MP + AA) reported the worst FCR. However, the (GNC + AA) had significantly (P≤0.01) the lowest AFP. The (GNC + MP + Con) group had the highest dressing % while the (MP + AA) group had the lowest dressing %. It is concluded that amino acids can be used instead of super concentrate in broiler feeding with perfect performance and less cost and that meat powder is not advisable to be used with amino acids.Keywords: broiler chickens, DL-lysine, methionine, performance
Procedia PDF Downloads 26711656 Wear Measurement of Thermomechanical Parameters of the Metal Carbide
Authors: Riad Harouz, Brahim Mahfoud
Abstract:
The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes.Keywords: lifetime, metal carbides, modeling, thermo-mechanical, wear
Procedia PDF Downloads 30911655 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters
Authors: Iveta Bryjova
Abstract:
Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity
Procedia PDF Downloads 30311654 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils
Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee
Abstract:
Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.Keywords: shear strength parameters, direct shear test, silty sand, shear stress, shear deformation
Procedia PDF Downloads 16311653 Cosmetic Dermatology Procedures: Survey Results of American Society for Dermatologic Surgery
Authors: Marina S. Basta, Kirollos S. Basta
Abstract:
Cosmetic dermatology procedures have witnessed exponential growth and diversification over the last 10 years. Thus, the purpose of this study was to collect data about the latest trends for cosmetic procedures reported by dermatologists during the year 2018. This study was performed by American Society for Dermatologic Surgery (ASDS) in 2018 through sending survey invitations to 3,358 practicing dermatologists in the U.S. containing streamline questions as well as statistical questions targeted to specific analysis of cosmetic dermatology trends. Out of the targeted physicians, only 596 dermatologists reply to the survey invitation (15% overall response rate). It was noted that data collected from that survey was generalized to represent all ASDS members. Results show that there is an increase in cosmetic dermatology procedures since 12.5 million procedures were reported for 2018 compared to only 7.8 million for 2012. Injectable neuromodulators and soft tissue fillers have topped the list with a 3.7 million procedure count. Body sculpting, chemical peeling, hair transplantation, and microneedling procedures were reported to be 1.57 million cases combined. Also, the top two procedures using laser were represented in wrinkle treatment as well as sun damage correction, while the lowest two trends for laser usage were for treatments of tattoos and birthmarks. Cryolipolysis was found to be at the head of body sculpting procedures with 287,435 cases, while tumescent liposuction was reported as the least performed body sculpting procedure (18,286 cases). In conclusion, comparing the procedural trends for the last 7 years has indicated that there has been a 78% increase in soft tissue filler treatment compared to 2012. In addition, it was further noted that laser procedures scored 74% increase in the last 7 years while body contouring procedures have had four folds increase in general compared to 2012.Keywords: cosmetic dermatology, ASDS procedure survey, laser, body sculpting
Procedia PDF Downloads 12411652 Leptin Levels in Cord Blood and Their Associations with the Birth of Small, Large and Appropriate for Gestational Age Infants in Southern Sri Lanka
Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha
Abstract:
In recent years childhood obesity has increased to pan-epidemic proportions along with a concomitant increase in obesity-associated morbidity. Birth weight is an important determinant of later adult health, with neonates at both ends of the birth weight spectrum at risk of future health complications. Consequently, infants who are born large for gestational age (LGA) are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. Adipose tissue plays a role in linking events in fetal growth to the subsequent development of adult diseases. In addition to its role as a storage depot for fat, adipose tissue produces and secrets a number of hormones of importance in modulating metabolism and energy homeostasis. Cord blood leptin level has been positively correlated with fetal adiposity at birth. It is established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given body mass index indicating a genetic predisposition in the occurrence of obesity. To our knowledge, studies have never been conducted in Sri Lanka to determine the relationship between adipocytokine profile in cord blood and anthropometric parameters in newborns. Thus, the objective of this study is to establish the above relationship for the Sri Lankan population to implement awareness programs to minimize childhood obesity in the future. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of leptin was measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured. Pearson’s correlation was used to assess the relationship between leptin and anthropometric parameters while the Mann-Whitney U test was used to assess the differences in cord blood leptin levels between small for gestational age (SGA), appropriate for gestational age (AGA) and LGA infants. There was a significant difference (P < 0.05) between the cord blood leptin concentrations of LGA infants (12.67 ng/mL ± 2.34) and AGA infants (7.10 ng/mL ± 0.90). However, a significant difference was not observed between leptin levels of SGA infants (8.86 ng/mL ± 0.70) and AGA infants. In both male and female neonates, umbilical leptin levels showed significant positive correlations (P < 0.05) with birth weight of the newborn, pre-pregnancy maternal weight and pre pregnancy BMI between the infants of large and appropriate for gestational ages. Increased concentrations of leptin levels in the cord blood of large for gestational age infants suggest that they may be involved in regulating fetal growth. Leptin concentration of Sri Lankan population was not significantly deviated from published data of Asian populations. Fetal leptin may be an important predictor of neonatal adiposity; however, interventional studies are required to assess its impact on the possible risk of childhood obesity.Keywords: appropriate for gestational age, childhood obesity, leptin, anthropometry
Procedia PDF Downloads 18811651 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor
Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin
Abstract:
Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator
Procedia PDF Downloads 10011650 Practical Challenges of Tunable Parameters in Matlab/Simulink Code Generation
Authors: Ebrahim Shayesteh, Nikolaos Styliaras, Alin George Raducu, Ozan Sahin, Daniel Pombo VáZquez, Jonas Funkquist, Sotirios Thanopoulos
Abstract:
One of the important requirements in many code generation projects is defining some of the model parameters tunable. This helps to update the model parameters without performing the code generation again. This paper studies the concept of embedded code generation by MATLAB/Simulink coder targeting the TwinCAT Simulink system. The generated runtime modules are then tested and deployed to the TwinCAT 3 engineering environment. However, defining the parameters tunable in MATLAB/Simulink code generation targeting TwinCAT is not very straightforward. This paper focuses on this subject and reviews some of the techniques tested here to make the parameters tunable in generated runtime modules. Three techniques are proposed for this purpose, including normal tunable parameters, callback functions, and mask subsystems. Moreover, some test Simulink models are developed and used to evaluate the results of proposed approaches. A brief summary of the study results is presented in the following. First of all, the parameters defined tunable and used in defining the values of other Simulink elements (e.g., gain value of a gain block) could be changed after the code generation and this value updating will affect the values of all elements defined based on the values of the tunable parameter. For instance, if parameter K=1 is defined as a tunable parameter in the code generation process and this parameter is used to gain a gain block in Simulink, the gain value for the gain block is equal to 1 in the gain block TwinCAT environment after the code generation. But, the value of K can be changed to a new value (e.g., K=2) in TwinCAT (without doing any new code generation in MATLAB). Then, the gain value of the gain block will change to 2. Secondly, adding a callback function in the form of “pre-load function,” “post-load function,” “start function,” and will not help to make the parameters tunable without performing a new code generation. This means that any MATLAB files should be run before performing the code generation. The parameters defined/calculated in this file will be used as fixed values in the generated code. Thus, adding these files as callback functions to the Simulink model will not make these parameters flexible since the MATLAB files will not be attached to the generated code. Therefore, to change the parameters defined/calculated in these files, the code generation should be done again. However, adding these files as callback functions forces MATLAB to run them before the code generation, and there is no need to define the parameters mentioned in these files separately. Finally, using a tunable parameter in defining/calculating the values of other parameters through the mask is an efficient method to change the value of the latter parameters after the code generation. For instance, if tunable parameter K is used in calculating the value of two other parameters K1 and K2 and, after the code generation, the value of K is updated in TwinCAT environment, the value of parameters K1 and K2 will also be updated (without any new code generation).Keywords: code generation, MATLAB, tunable parameters, TwinCAT
Procedia PDF Downloads 22711649 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel
Authors: Nixon Kuruvila, H. V. Ravindra
Abstract:
Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)
Procedia PDF Downloads 40911648 Issues on Optimizing the Structural Parameters of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters
Procedia PDF Downloads 34511647 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 35311646 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T.Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)
Procedia PDF Downloads 49811645 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters
Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset
Abstract:
The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters
Procedia PDF Downloads 13311644 Response of Selected Echocardiographic Features to Aerobic Training in Obese Hypertensive Males
Authors: Abeer Ahmed Abdelhameed
Abstract:
The aim of this study was to investigate the effect of aerobic exercises on LV parameters, lipid profile, and anthropometric measurements in hypertensive middle aged male subjects. Thirty obese patients were recruited for the study from the outpatient clinic of National Heart Institute, Egypt. Their ages ranges from 40 to 60 years. All participants underwent an aerobic training program including regular aerobic sub-maximal exercises in the form of treadmill walking and abdominal exercises 3/week for four months, the exercise were individually tailored for each participant depending on the result of cardiopulmonary exercise test. The result showed no significant difference observed in both LVPWT and LVSWT data from pre-test values to post-test values in all subjects after 4 months, with a significant reduction in WHR, systolic blood pressure, TAG and LDL records. Result also revealed a significant increase in HDL, Eƒ, LVEDD and FS records for all participants. The significant improvement in ventricular functions in form of ejection fraction of electrical group more than exercise group after 4 months at the end of the study may be due to the beneficial effect of faradic stimulation in lipolysis of storage adipose tissues, stimulation of lean body mass and muscles and/or thermal effect that improves vascularization.Keywords: left ventricular parameters, aerobic training, electrical stimulation, lipid profile
Procedia PDF Downloads 25411643 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects
Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour
Abstract:
In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.Keywords: hydrogen bonding, density functional theory (DFT), natural bond orbitals (NBO), cooperativity effect
Procedia PDF Downloads 45611642 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 11111641 Vibration Analysis of Stepped Nanoarches with Defects
Authors: Jaan Lellep, Shahid Mubasshar
Abstract:
A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.Keywords: crack, nanoarches, natural frequency, step
Procedia PDF Downloads 128