Search results for: Virulence features.
3419 Exploring Individual Decision Making Processes and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies
Authors: Rebecca J. Hafner, Daniel Read, David Elmes
Abstract:
The current research applies decision making theory in order to address the problem of increasing uptake of energy-efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. Specifically, in two studies we apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. As researchers in the Interdisciplinary centre for Storage, Transformation and Upgrading of Thermal Energy (i-STUTE) are currently developing energy efficient heating systems for homes and businesses, we focus on the context of home heating choice, and compare preference for a standard condensing boiler versus an energy efficient heat pump, according to experimental manipulations in the structure of prior information. In Study 1, we find that people prefer stronger alignable features when options are similar; an effect which is mediated by an increased tendency to infer missing information is the same. Yet, in contrast to previous research, we find no effects of alignability on option preference when options differ. The advanced methodological approach used here, which is the first study of its kind to randomly allocate features as either alignable or non-alignable, highlights potential design effects in previous work. Study 2 is designed to explore the interaction between alignability and construal level as an explanation for the shift in attentional focus when options differ. Theoretical and applied implications for promoting energy efficient technologies are discussed.Keywords: energy-efficient technologies, decision-making, alignability effects, construal level theory, CO2 reduction
Procedia PDF Downloads 3313418 Multimodal Convolutional Neural Network for Musical Instrument Recognition
Authors: Yagya Raj Pandeya, Joonwhoan Lee
Abstract:
The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean
Procedia PDF Downloads 2153417 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing
Authors: T. Bensana, S. Mekhilef
Abstract:
The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising
Procedia PDF Downloads 3803416 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1023415 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1683414 Hypotonia - A Concerning Issue in Neonatal Care
Authors: Eda Jazexhiu-Postoli, Gladiola Hoxha, Ada Simeoni, Sonila Biba
Abstract:
Background Neonatal hypotonia represents a commonly encountered issue in the Neonatal Intensive Care Unit and newborn nursery. The differential diagnosis is broad, encompassing chromosome abnormalities, primary muscular dystrophies, neuropathies and inborn errors of metabolism. Aim of study Our study describes some of the main clinical features of hypotonia in newborns and presents clinical cases of neonatal hypotonia we treated in our Neonatal unit in the last 3 years. Case reports Four neonates born in our hospital presented with hypotonia after birth, one preterm newborn 35-36 weeks of gestational age and three other term newborns (38-39 weeks of gestational age). Prenatal data revealed a decrease in fetal movements in both cases. Intrapartum meconium-stained amniotic fluid was found in 75% of our hypotonic newborns. Clinical features included inability to establish effective respiratory movements and need for resuscitation in the delivery room, respiratory distress syndrome, feeding difficulties and need for oro-gastric tube feeding, dysmorphic features, hoarse voice and moderate to severe muscular hypotonia. The genetic workup revealed the diagnosis of Autosomal Recessive Congenital Myasthenic Syndrome 1-B, Sotos Syndrome, Spinal Muscular Atrophy Type 1 and Transient Hypotonia of the Newborn. Two out of four hypotonic neonates were transferred to the Pediatric Intensive Care Unit and died at the age of three to five months old. Conclusion Hypotonia is a concerning finding in neonatal care and it is suggested by decreased intrauterine fetal movements, failure to establish first breaths, respiratory distress and feeding difficulties in the neonate. Prognosis is determined by its etiology and time of diagnosis and intervention.Keywords: hypotonic neonate, respiratory distress, feeding difficulties, fetal movements
Procedia PDF Downloads 1153413 Travel Behaviour and Perceptions in Trips with a Ferry Connection
Authors: Trude Tørset, María Díez Gutiérrez
Abstract:
The west coast of Norway features numerous islands and fjords. Ferry services connect the roads when these features make the construction challenging. Currently, scientific effort is designated to assess potential ferry replacement projects along the European road E-39. The inconvenience of ferry dependency is imprecisely represented in the transport models, thus transport analyses of ferry replacement projects appear as guesstimates rather than reliable input to decision-making processes of such costly projects. Trips including ferry connections imply more inconvenient elements than just travel time and cost. The goal of this paper is to understand and explain the extra inconveniences associated to the dependency of the ferry. The first scientific approach is to identify the characteristics of the ferry travelers and their trips’ features, as well as whether the ferry represents an obstacle for some specific trip types. In doing so, a survey was conducted in 2011 in eight E-39 ferries and in 2013 in 18 ferries connecting different road categories. More than 20,000 passengers answered with their trip and socioeconomic characteristics. The travel patterns in the different ferry connections were compared. The analysis showed that the trip features differed based on the location of the ferry connections, yet independently of the road category. Additionally, the patterns were compared to the national travel survey to detect differences in the travel patterns due to the use of the ferry connections. The results showed that the share of commuting trips within the same travel time was lower if the ferry was part of the trip. The second scientific approach is to know how the different travelers perceive potential benefits for a ferry replacement project. In the 2011 survey, some of the questions were about the relevance of nine different benefits this project might bring. Travelers identified the better access to public services and job market as the most valuable benefits, followed by the reduced planning of the trip. In 2016, a follow-up survey in some of the ferry connections was carried out in order to investigate variations in travelers’ perceptions. The growing interest in ferry replacement projects might make travelers more aware of the potential benefits these would bring to their daily lives. This paper describes the travel behaviour of travelers using a ferry connection as part of their trips, as well as the potential inconveniences associated to these trips. The findings might provide valuable input to further development of transport models, concept evaluations and cost benefit analysis methods.Keywords: ferry connections, ferry trip, inconvenience costs, travel behaviour
Procedia PDF Downloads 2283412 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.Keywords: aggregation, amyloids, thermophilic proteins, amino acid residues, machine learning techniques
Procedia PDF Downloads 6153411 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 1243410 Breaking through Barricades to Enhance the University Library Infrastructure to Aid the Visually Challenged - Contemplated Based within the Sri Lankan Context
Authors: Wilfred Jeyatheese Jeyaraj
Abstract:
The Sri Lankan legislative acts dictate several recommendations to improve accessibility of services for the visually challenged. But the main consideration here is the feasibility and extent to which these endorsements have been implemented in actuality within Sri Lankan academic libraries. This paper tends to assess the existent issues that impediment the implementation of accessibility features for the visually challenged in Sri Lankan academic libraries. Visually challenged students continually walk through immense challenges to step forth into their university life. Reaching their undergrad stage of their academic phase, they should be entitled to access information resources with ease and with equality in comparison to the sighted users of a university library. The current university libraries in Sri Lanka, have well improved services that they render to their users. But, what lacks in this scenario is the consideration as to whether these features offered by libraries are user-friendly and easily accessible by the visually challenged users as well. Hence, this paper tends to analyze the inhibitions in delivering services oriented towards the visually challenged and the sighted, and propose feasible alternatives to create a neutral high-end university library environment.Keywords: accessibility, university library, Sri Lanka, visually-challenged
Procedia PDF Downloads 2913409 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 3643408 Linguistic Landscape as a Bottom-up Approach: Investigation of Semiotic Features and Language Use in the Catering Industry in Hong Kong
Authors: Tsz Ching Jasmine Lam
Abstract:
Linguistic landscape (LL) can serve as both top-down and bottom-up approaches to understanding language planning policy in various dimensions. It can reflect the language identities, motives and contestations perceived by stakeholders of different decision-making levels. Prior studies adopted the bottom-up approach to investigate the language practice and ideologies reflected by the design and linguistic features observed in the linguistic landscapes in ethnically and linguistically diverse areas, like Medan in Russia and Seoul in Korea. As Hong Kong is also a trilingual city with an inclusive combination of nationalities, this paper is intended to take it as a case study to explore the de facto language ideologies reflected by LL at the micro-level. We would look into the catering industry from a holistic perspective by reviewing the food menus of 66 restaurants located in diversified districts and serving different types of cuisines. This bottom-up LL research reveals that business owners and the public share the language ideologies of perceiving English as a prestigious language, multilingualism and traditional Chinese as a standard character.Keywords: bottom-up, language ideologies, language planning policy, language policy, language identities, linguistic landscape
Procedia PDF Downloads 813407 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 2513406 Genres of Communication and Readers’ Reactions: Popular Science Magazines on Facebook
Authors: Artur Daniel Ramos Modolo
Abstract:
Popular science magazines are an important way to communicate scientific information to lay audience in science. Since the popularization of social networking sites (SNSs) such as Facebook and Twitter, these magazines are trying to adapt their content to these new media. In this study, one hundred posts of popular science magazines on Facebook are analyzed regarding the use of genres of communication and readers’ reactions. The quantitative analysis of these features considers the variety of genres and how the users of Facebook answer to them (liking, sharing and commenting). The first hypothesis was that these magazines used the genres of communication posted on Facebook both to marketing and informational purposes and that these mixed intentions have an impact in the number of readers’ reactions. In order to analyze these features, twenty timeline posts published by five magazines: Cosmos, Galileu, New Scientist, Scientific American and Superinteressante were gathered during the period of three days (6th November 2015–8th November 2015). This research shows that the hyperlinks posted by these magazines created ways to diversify the communication genres used on their pages and, at the same time, revealed that, overall, readers react quantitatively different to these genres.Keywords: Facebook, genres of communication, likes, popular science magazines, social networking sites
Procedia PDF Downloads 4023405 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 133404 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 3123403 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades
Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma
Abstract:
Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91
Procedia PDF Downloads 2613402 Concept Analysis of Professionalism in Teachers and Faculty Members
Authors: Taiebe Shokri, Shahram Yazdani, Leila Afshar, Soleiman Ahmadi
Abstract:
Introduction: The importance of professionalism in higher education not only determines the appropriate and inappropriate behaviors and guides faculty members in the implementation of professional responsibilities, but also guarantees faculty members' adherence to professional principles and values, ensures the quality of teaching and facilitator will be the teaching-learning process in universities and will increase the commitment to meet the needs of students as well as the development of an ethical culture based on ethics. Therefore, considering the important role of medical education teachers to prepare teachers and students in the future, the need to determine the concept of professional teacher and teacher, and the characteristics of teacher professionalism, we have explained the concept of professionalism in teachers in this study. Methods: The concept analysis method used in this study was Walker and Avant method which has eight steps. Walker and Avant state the purpose of concept analysis as follows: The process of distinguishing between the defining features of a concept and its unrelated features. The process of concept analysis includes selecting a concept, determining the purpose of the analysis, identifying the uses of the concept, determining the defining features of the concept, identifying a model, identifying boundary and adversarial items, identifying the precedents and consequences of the concept, and defining empirical references. is. Results: Professionalism in its general sense, requires deep knowledge, insight, creating a healthy and safe environment, honesty and trust, impartiality, commitment to the profession and continuous improvement, punctuality, criticism, professional competence, responsibility, and Individual accountability, especially in social interactions, is an effort for continuous improvement, the acquisition of these characteristics is not easily possible and requires education, especially continuous learning. Professionalism is a set of values, behaviors, and relationships that underpin public trust in teachers.Keywords: concept analysis, medical education, professionalism, faculty members
Procedia PDF Downloads 1553401 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 4113400 Grading Histopathology Features of Graft-Versus-Host Disease in Animal Models; A Systematic Review
Authors: Hami Ashraf, Farid Kosari
Abstract:
Graft-versus-host disease (GvHD) is a common complication of allogeneic hematopoietic stem cell transplantation that can lead to significant morbidity and mortality. Histopathological examination of affected tissues is an essential tool for diagnosing and grading GvHD in animal models, which are used to study disease mechanisms and evaluate new therapies. In this systematic review, we identified and analyzed original research articles in PubMed, Scopus, Web of Science, and Google Scholar that described grading systems for GvHD in animal models based on histopathological features. We found that several grading systems have been developed, which vary in the tissues and criteria they assess, the severity scoring scales they use, and the level of detail they provide. Skin, liver, and gut are the most commonly evaluated tissues, but lung and thymus are also included in some systems. Our analysis highlights the need for standardized criteria and consistent use of grading systems to enable comparisons between studies and facilitate the translation of preclinical findings to clinical practice.Keywords: graft-versus-host disease, GvHD, animal model, histopathology, grading system
Procedia PDF Downloads 643399 The Phenomenon of Biofilm Formation and the Subsequent Management of Foodborne Pathogenic Bacteria
Authors: Raana Babadi Fathipour
Abstract:
Biofilms, those intricate structures of microbial aggregation that emerge as microorganisms adhere to animate or inanimate surfaces, possess an innate capacity to shield their inhabitants from adversities within the environment whilst fortifying their endurance against antimicrobial agents. This remarkable aspect facilitates the persistence and virulence of said microorganisms, establishing biofilm formation as an integral component of bacterial survival mechanisms. However, should foodborne pathogens adopt this mode of existence, the potentiality for foodborne disease infections becomes alarmingly intensified—an alarming prospect that harbors significant public health hazards and engenders deleterious economic ramifications. Thus, due to these consequences lurking on the horizon, extensive research concentrating upon comprehending biofilms and devising efficacious removal strategies assumes a position imbued with paramount importance within the realm of the food industry. The problem of food waste resulting from spoilage in the food industry continues to present a widespread challenge to both environmental sustainability and the security of our food supplies. In this comprehensive analysis, we delve into the formation of bacterial biofilms, highlighting the specific issues they pose within the realm of food production. Additionally, we provide an overview of various types of common foodborne pathogens that tend to thrive in these biofilms. Furthermore, we summarize existing strategies aimed at tackling or managing detrimental bacterial biofilm growth. We also introduce contemporary approaches that show promise in terms of controlling this issue and highlight their potential for further advancement. Ultimately, our focus lies on outlining prospects for future development as they pertain specifically to combatting bacterial biofilms within the field.Keywords: foodborne pathogens, food safety, biofilm, resistance, quorum-sensing
Procedia PDF Downloads 593398 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 1343397 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 633396 Latest Generation Conducted Electrical Weapon Dart Design: Signature Marking and Removal for the Emergency Medicine Professional
Authors: J. D. Ho, D. M. Dawes, B. Driver
Abstract:
Introduction: TASER Conducted Electrical Weapons (CEWs) are the dominant CEWs in use and have been used in modern police and military operations since the late 1990s as a form of non-lethal weaponry. The 3rd generation of CEWs has been recently introduced and is known as The TASER 7. This new CEW will be replacing current CEW technology and has a new dart design that is important for emergency medical professionals to be familiar with because it requires a different method of removal and will leave a different marking pattern in human tissue than they may have been previously familiar with. features of this new dart design include: higher velocity impact, larger impact surface area, break away dart body segment, dual back-barb retention, newly designed removal process. As the TASER 7 begins to be deployed by the police and military personnel, these new features make it imperative that emergency medical professionals become familiar with the signature markings that this new dart design will make on human tissue and how to remove them. Methods: Multiple observational studies using high speed photography were used to record impact patterns of the new dart design on fresh tissue and also the newly recommended dart removal process. Both animal and human subjects were used to test this dart design prior to production release. Results: Data presented will include dart design overview, flight pattern accuracy, impact analysis, and dart removal example. Tissue photographs will be presented to demonstrate examples of signature TASER 7 dart markings that emergency medical professionals can expect to see. Conclusion: This work will provide the reader with an understanding of this newest generation CEW dart design, its key features, its signature marking pattern that can be expected and a recommendation of how to remove it from human tissue.Keywords: TASER 7, conducted electrical weapon, dart mark, dart removal
Procedia PDF Downloads 1553395 Authorship Profiling of Unidentified Corpora in Saudi Social Media
Authors: Abdulaziz Fageeh
Abstract:
In the bustling digital landscape of Saudi Arabia, a chilling wave of cybercrime has swept across the nation. Among the most nefarious acts are financial blackmail schemes, perpetrated by anonymous actors lurking within the shadows of social media platforms. This chilling reality necessitates the utilization of forensic linguistic techniques to unravel the identities of these virtual villains. This research delves into the complex world of authorship profiling, investigating the effectiveness of various linguistic features in identifying the perpetrators of malicious messages within the Saudi social media environment. By meticulously analyzing patterns of language, vocabulary choice, and stylistic nuances, the study endeavors to uncover the hidden characteristics of the individuals responsible for these heinous acts. Through this linguistic detective work, the research aims to provide valuable insights to investigators and policymakers in the ongoing battle against cybercrime and to shed light on the evolution of malicious online behavior within the Saudi context.Keywords: authorship profiling, arabic linguistics, saudi social media, cybercrime, financial blackmail, linguistic features, forensic linguistics, online threats
Procedia PDF Downloads 163394 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li
Abstract:
The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition
Procedia PDF Downloads 3063393 Bag of Local Features for Person Re-Identification on Large-Scale Datasets
Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou
Abstract:
In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking
Procedia PDF Downloads 1973392 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 4713391 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1853390 Histopathological Features of Infections Caused by Fusarium equiseti (Mart.) Sacc. in Onion Plants from Kebbi State, Northern Nigeria
Authors: Wadzani Dauda Palnam, Alao S. Emmanuel Laykay, Afiniki Bawa Zarafi, Olufunmilola Alabi, Dora N. Iortsuun
Abstract:
Onion production is affected by several diseases including fusariosis. Study was conducted to investigate the histopathological features of different onion tissues infected with Fusarium equiseti by inoculation with soil drench, root dip and mycelia paste methods. This was carried out by fixation, dehydration, clearing, wax embedding, sectioning, staining and mounting of leaf and root sections for microscopical examination at 400x. Once infection occurred in the roots, the pathogen moved through the vascular system to colonize the whole plant. At first, it grew in the intercellular spaces of the root cortex but soon invaded the cells, followed by colonization of the cells by its hyphae and microconidia. At later stages of infection, the cortex tissue became completely disorganized and decomposed as the pathogen advance to the shoot system via the vessel elements; this may be responsible for the early wilting symptom of infected plants arising from the severe water stress due to blockage of the xylem tissues.Keywords: onion, histopathology, infection, fusaria, inoculation
Procedia PDF Downloads 279